

в монтажном пространстве профильной линейной направляющей

	страни	ица
Общий обзор	Компактная гидростатическая линейная направляющая	
Основные свойства	Гидростатическое демпфирование с помощью масляной подушки	3
	Принцип действия	3
	Преимущества данного решения	4
	Поставляемые исполнения	4
	Условия эксплуатации	4
	Уплотнения	4
	Защита от коррозии	4
	Температура эксплуатации	4
Рекомендации конструктору	Взаимозаменяемость	5
и обеспечение надежности	Предварительный натяг	5
	Трение	5
	Жесткость	5
	Монтаж компактной гидростатической направляющей	6
	Гидравлический агрегат	7
	Расположение отверстий в направляющем рельсе	8
	Проектирование сопрягаемой конструкции	9
Точность	Высоты упорных бортиков и радиусы скругления углов	11
	Классы точности	11
	Позиционные допуски и допуски длины направляющего рельса	13
Пример обозначения	Симметричное расположение отверстий	14
для заказа	Несимметричное расположение отверстий	
Таблицы размеров	Компактная гидростатическая линейная направляющая	16

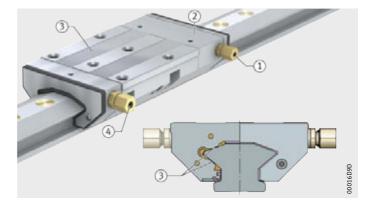
Общий обзор Компактная гидростатическая линейная направляющая

в монтажном пространстве профильной линейной направляющей

Основные свойства

Каретки профильных линейных направляющих качения не могут обеспечить демпфирование колебаний. Для рационального гашения колебаний сопряженной конструкции потребуются такие дополнительные элементы, как пассивная демпфирующая каретка RUDS-D, устанавливаемая совместно с направляющими качения с циркуляцией роликов RUE-E и располагающаяся между каретками. При этом демпфирующий элемент должен располагаться в месте наибольшей амплитуды, чтобы оказывать максимальное влияние на колебания при изгибе элементов. Для этого требуется хорошее знание свойств источника колебаний.

Гидростатическое демпфирование с помощью масляной подушки


Для применений с очень высокими требованиями к демпфированию колебаний, динамической жесткости и грузоподъемности на базе испытанных временем наших линейных направляющих с циркуляцией роликов RUE..-Е, сейчас размерной серии 45, производится компактная гидростатическая линейная направляющая.

Данная линейная направляющая с предварительным натягом является целостным узлом. Она специально сконструирована для демпфирования колебаний, и ее дооснащение специальными гасящими колебания элементами не требуется.

Принцип действия

Система камер в каретке заполняется гидравлическим маслом. Масло под постоянным давлением подводится к стороне нагнетания, рис. 1. Встроенные дроссели отрегулированы так, чтобы под давлением обеспечивалась оптимальная посадка каретки на направляющем рельсе с равномерным распределением зазора 0,025 мм. Разгрузочные карманы в каретке обеспечивают омывание маслом.

Масло без давления из каретки отводится со стороны разрежения и снова подается в масляный контур.

 тогорона нагнетания
 встроенный дроссель
 разгрузочные карманы
 сторона разрежения (безнапорная зона)

Рисунок 1 Функциональные элементы

Преимущества данного решения

Благодаря интегрированному гидравлическому управлению гидростатическая линейная направляющая готова к монтажу и может быть встроена в стандартное монтажное пространство, предусмотренное для линейной направляющей качения с циркуляцией роликов.

Требуется лишь одна концепция станка

Благодаря неизменности монтажного пространства согласно DIN, а также присоединительных размеров по DIN, предусмотренных для профильных линейных направляющих (одинаковые геометрические присоединительные размеры и одинаковый габаритный профиль сечения), в пределах одной концепции станка реализуемы несколько классов его исполнения. Таким образом, при наличии всего лишь одной концепции станка могут быть реализованы различные требования к обработке детали.

В зависимости от основной задачи возможны, например:

- получение превосходного качества поверхности и точности при нормальном резании;
- повышенная производительность и глубина резания при высокопроизводительной обработке со стандартно высокими качеством обработки и точностью.

Технические характеристики

Трение между направляющим рельсом и кареткой стремится к нулю, см. главу «Трение», стр. 5. Жесткость по прижимающему усилию соответствует стандартной линейной направляющей качения с циркуляцией роликов RUE-E.

Восприятие нагрузки в металлообрабатывающем станке аналогично применению при использовании стандартных профильных линейных направляющих качения. Каретка воспринимает усилия со всех направлений, исключая направление перемещения, и моменты относительно всех осей.

Она пригодна для ускорений до 100 м/с 2 и скоростей до 120 м/мин.

Поставляемые исполнения

Гидростатическая система состоит, как минимум, из двух направляющих рельсов ТSH, двух кареток HLW на каждом направляющем рельсе и заглушек из латуни для закрывания цековок крепежных отверстий в направляющих рельсах.

Направляющие рельсы поставляются только цельными с максимальной длиной 5 900 мм, стыковка направляющих рельсов не допускается.

Условия эксплуатации

Для эксплуатации компактных гидростатических направляющих требуется гидравлическое масло HLP 46 согласно классификации по DIN 51524-2. Масло соответствует классу вязкости ISO VG 46, частицы более 10 мкм должны быть отфильтрованы.

Уплотнения

Эластичные уплотнения на торцах и продольные уплотнения с нижней стороны кареток защищают систему перемещения от загрязнений и сохраняют гидравлическое масло в каретке.

Защита от коррозии

Коррозионностойкое исполнение не поставляется.

Температура эксплуатации

Компактная направляющая разработана для комнатной температуры ($\approx +22$ °C).

Рекомендации конструктору и обеспечение надежности Взаимозаменяемость

Каретки и направляющие рельсы согласованы между собой и поэтому не могут произвольно сочетаться с другими направляющими и каретками.

Дроссели кареток отрегулированы на обеспечение соответствующего зазора.

Система с компактными гидростатическими направляющими всегда состоит, как минимум, из двух направляющих рельсов с двумя каретками на каждом. Конструкция только с одним направляющим рельсом или одной кареткой невозможна.

Предварительный натяг

Линейная направляющая HLE имеет предварительный натяг посредством гидравлического давления около 5 МПа. Предварительный натяг определяется настройкой дросселей.

Влияние предварительного натяга на компактную линейную направляющую

Жесткость системы повышается при увеличении предварительного натяга. Вместе с тем, предварительный натяг не влияет на усилие перемещения или срок службы компактной направляющей.

Трение

До достижения предельной нагрузки трение от нагрузки не зависит. Имеющееся постоянное сопротивление перемещению около 20 Н на каждую каретку возникает лишь из-за наличия кругового уплотнения.

Жесткость

Жесткость составляет:

- по прижимающей нагрузке = 1200 H/мкм;
- по отрывающей нагрузке = 900 Н/мкм;
- по боковой нагрузке = 500 Н/мкм.

Значения определялись для системы (HLE45), состоящей из двух направляющих рельсов (TSH45) и четырех кареток (HLW45), которые были закреплены винтами на плите, при рабочем давлении 10 МПа. Они учитывают деформацию гидростатической направляющей HLE, включая резьбовое соединение с сопряженной конструкцией.

Параметры жесткости действительны только при закреплении шестью винтами и соответствующем снабжении маслом, см. раздел «Гидравлический агрегат», стр. 7.

Монтаж компактной гидростатической направляющей

Ни в коем случае не надевать на направляющий рельс каретку, не смазав ее предварительно маслом.

Направляющие рельсы должны быть выровнены, хорошо закреплены винтами; отверстия должны быть закрыты латунными заглушками.

При применении гидростатической линейной направляющей оба рельса и каретки с одной стороны должны иметь жесткий упор.

Монтаж

При монтаже придерживайтесь следующей последовательности:

- Поместите на рельс и, не прилагая нагрузки, переместите смазанную маслом каретку в монтажную позицию.
- Произведите гидравлическое подключение каретки (Положение штуцерных присоединений для маслопроводов и заглушек при необходимости может быть перенесено на противоположную сторону).
- Обеспечьте систему рабочим давлением.
- Установите на каретки сопрягаемую деталь.
- Закрутите винты крепления каретки с ее плоской стороны (сверху).
- Затяните сначала четыре наружных винта, затем средние винты. Следует принять во внимание длину винтов.

Линейная направляющая готова к работе.

Гидравлический агрегат

Потребность каждой каретки в масле составляет 1,3 л/мин.

Пример

В кооперации с фирмой Hydac были разработаны следующие типовые требования к гидравлическому агрегату для системы линейных направляющих, состоящей из двух рельсов с двумя каретками на каждом рельсе.

Требования к гидравлическому агрегату:

- контур давления с электродвигателем V1 мощностью 1,5 кВт, $n = 1500 \text{ мин}^{-1}$, 400 В, шестеренный насос с внешним зацеплением $Q = 6 \pi / \text{мин при p} \approx 110 \text{ бар};$
- масляный резервуар NG63 с входным фильтром и фильтром системы вентиляции, контролем уровня масла, реле температуры, шаровым сливным краном;
- фильтр контура охлаждения (откачивающий насос) с электродвигателем V1, мощностью 0,37 кВт, $n = 1500 \text{ мин}^{-1}$, 400 В, шестеренный насос с внешним зацеплением $Q = 10 \text{ л/мин при р} \approx 5 \text{ бар}$;
- маслоохладитель, пластинчатый теплообменник (HEX 615-30(C71,C71));
- компрессорный охлаждающий агрегат. Мощность охлаждения не менее суммы мощностей насосов;
- масляный фильтр в напорной линии, размер частиц ≤ 10 мкм.

Параметры охладителя

Охладитель масла должен иметь такие характеристики, чтобы температура масла на выходе гидравлического агрегата была на 6 К ниже желаемой для гидростатической направляющей температуры окружающего воздуха.

Подводящий и возвратный трубопроводы гидравлической системы

Как правило, следует выбирать как можно большие диаметры трубопроводов.

Подводящий трубопровод

Подводящая линия должна иметь внутренний диаметр 16 мм и как можно ближе к каретке уменьшаться до внутреннего диаметра, составляющего 4 мм.

Размер штуцера высокого давления в каретке L6 ($M10 \times 1,0$).

Возвратный трубопровод

В возвратном трубопроводе сопротивление линий от всех кареток до откачивающего насоса должно быть одинаковым и. по возможности, минимальным.

Размер штуцера низкого давления в каретке L8 ($M12 \times 1,5$).

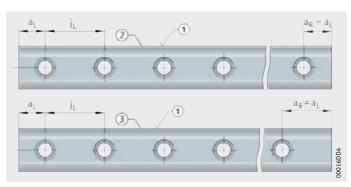
На расстоянии не более 300 мм от выхода из каретки внутренний диаметр откачивающего трубопровода должен быть увеличен до 16 мм.

Если возвратный трубопровод длиннее 3 м, откачивающий насос, по возможности, следует установить непосредственно на оси.

Давление подпора в возвратной линии должно быть < 0,2 бар. Принципиально важно, чтобы было рассчитано сопротивление откачивающего и напорного трубопроводов.

В гидравлическом агрегате должно быть предусмотрено реле давления, которое дает разрешающий сигнал на перемещение гидростатической оси только при достижении достаточного давления.

Перемещение направляющей допускается только при активной гидравлике.


Расположение отверстий в направляющем рельсе

При отсутствии особых указаний расположение крепежных отверстий в направляющих рельсах симметричное, рис. 2.

По желанию возможно несимметричное расположение отверстий. При этом обеспечить $a_1 \ge a_{1 \min}$ и $a_R \ge a_{R \min}$, puc. 2.

⟨1⟩ сопрягаемая сторона (2) симметричное расположение отверстий (3) несимметричное расположение отверстий

Рисунок 2 Расположение отверстий на рельсе

Максимальное количество шагов

Количество шагов есть округленная целочисленная часть:

$$n = \frac{l - 2 \cdot a_{L \, min}}{j_L}$$

Для расстояний a_L и a_R имеет место следующее:

$$a_1 + a_R = l - n \cdot j_1$$

Для направляющих рельсов с симметричным расположением отверстий справедливо:

$$a_L = a_R = \frac{1}{2} \cdot \left(l - n \cdot j_L \right)$$

Количество отверстий:

x = n + 1

расстояние от начала или конца направляющего рельса до ближайшего отверстия;

a_{L min}, a_{R min} MM

минимальные значения для a_{l} , a_{R} , см. в табл. размеров;

MM

длина направляющего рельса;

максимально возможное количество шагов; MM

расстояние между отверстиями;

количество отверстий.

При несоблюдении минимальных значений для а и а возможен врез в цековку.

Составные рельсы

Изготовление составных рельсов невозможно.

Проектирование сопрягаемой конструкции

Точность перемещения в основном зависит от прямолинейности, точности и жесткости сопрягаемых и монтажных поверхностей.

Прямолинейность системы устанавливается лишь тогда, когда направляющая прижата к базовой поверхности.

При повышенных требованиях к точности перемещения и/или при нежесткой несущей конструкции, и/или при подвижных направляющих рельсах, пожалуйста, обратитесь в консультационную службу Schaeffler.

Точность формы и расположения базовых поверхностей

Чем точней и легкоходней должна быть направляющая, тем более строго следует подходить к точности формы и расположения поверхностей сопрягаемых деталей.

Обеспечить допуски согласно рис. 3, стр. 10.

Поверхности шлифовать или обработать тонким фрезерованием, стремиться к параметру шероховатости Ra 1,6.

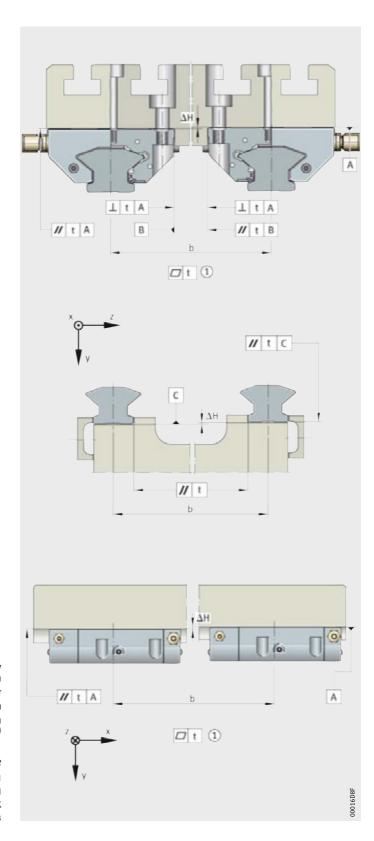
Отклонения от заданных допусков ухудшают общую точность, изменяют предварительный натяг и могут привести к отказу.

Разность высот ΔH

Для ΔH допустимы значения согласно следующему уравнению. При бо́льших отклонениях обращайтесь с запросом.

$\Delta H = \mathbf{a} \cdot \mathbf{b}$	
ΔH мкм максимальное допустимое отклонение от теоретически точного положе $puc.~3,$ стр. 10;	ния,
а – коэффициент, зависящий от класса предварительного натяга, здесь: 0,	075:
b мм межцентровые расстояния направляющих элементов.	o, _o ,

Параллельность смонтированных направляющих рельсов


Для параллельно расположенных направляющих рельсов существует допуск параллельности t, *puc. 3*, стр. 10, и табл.

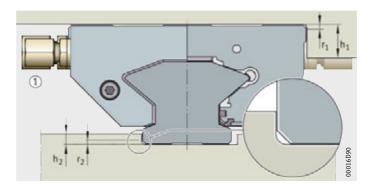
Допуск параллельности t для направляющих рельсов

Условное обозначение	Допуск параллельности t мкм
TSH45	< 10

При использовании максимальных значений сопротивление перемещению может возрасти.

b = расстояние между направляющими рельсами ΔH = разность высот t = допуск параллельности ① выполнить невыпуклыми (для всех обработанных поверхностей)

Рисунок 3 Допуски сопрягаемых поверхностей и параллельность смонтированных направляющих рельсов

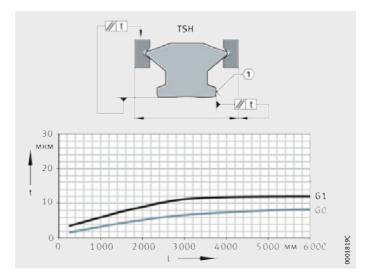

Точность

Высоты упорных бортиков и радиусы скругления углов

Высоты упорных бортиков и радиусы скругления должны согласоваться с компактной направляющей, см. табл. и *puc.* 4. В сопрягаемой конструкции должно быть место для заглушек и штуцеров, *puc.* 4.

Высоты упорных бортиков и радиусы скругления углов

Условное обозначение	h ₁	h ₂ макс.	r ₁ макс.	r ₂ макс.
	мм	мм	мм	мм
HLE45	10	8	1	0,8



① место в сопрягаемой конструкции

Рисунок 4 Высоты упорных бортиков и радиусы скругления углов

Классы точности

Компактная направляющая HLE производится с классом точности от G0 до G1, puc. 5. Стандартным является класс G1.

t = допуск параллельности при дифференциальном измерении l = полная длина направляющего рельса ⟨т⟩ сопрягаемая сторона

> Рисунок 5 Классы точности и допуски параллельности направляющих рельсов

Параллельность направляющих и сопрягаемых поверхностей

Допуск параллельности направляющих рельсов зависит от класса точности, рис. 5, стр. 11.

Допуски

Допуски являются средними арифметическими величинами. Они отнесены к центру сопрягаемых и закрепляемых винтами поверхностей каретки.

Размеры Н и А₁ всегда остаются в пределах допуска, независимо от того, в каком месте направляющего рельса находится каретка, см. табл.

Базовые размеры H и A_1 см. на *рис.* 6.

Точность перемещения

На точность перемещения влияет точность сопрягаемой конструкции.

Допуски классов точности

Допуск		Класс точности				
		G0 мкм	G1 ¹⁾ мкм			
Допуск высоты	H ³⁾	±5	±10			
Разность высот ²⁾	ΔΗ	3	5			
Допуск расстояния	A ₁ ³⁾	±5	±10			
Разность расстояний ²⁾	ΔA_1	3	7			

¹⁾ Стандартный класс точности.

³⁾ Теоретическое значение, полученное технологическим методом.

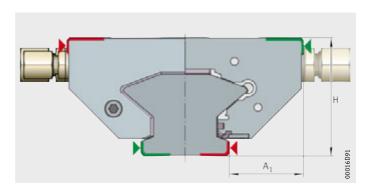


Рисунок 6 Базовые размеры для нормирования точности

²⁾ Разность между несколькими каретками на одном и том же рельсе, измеренная в одном и том же месте рельса.

Позиционные допуски и допуски длины направляющего рельса

Позиционные допуски и допуски длины направляющих рельсов см. табл. и *рис. 7*.

Расположение отверстий соответствует DIN ISO 1101.



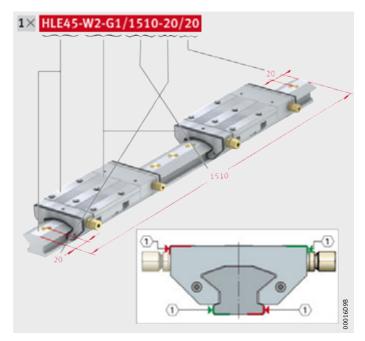
Рисунок 7
Позиционные допуски
и допуски длины
направляющих рельсов

Допуски длины направляющих рельсов

Условное обозначение	Допуск направляющих рельсов, в зависимости от длины l_{\max}^{1}										
	≦1 000 мм	>1 000 mm <3 000 mm	>3 000 мм								
TSH45	-1 мм	-1,5 мм	±0,1% длины рельса								

 $^{^{1)}}$ Длину l_{max} см. в табл. размеров.

Пример обозначения для заказа


Симметричное

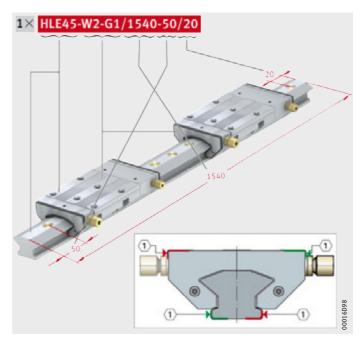
расположение отверстий

Компактная гидростатическая направляющая	HLE
Обозначение размерной серии	45
Количество кареток на одном рельсе	W2
Класс точности	G1
Длина направляющего рельса	1 510 mm
a_{L}	20 mm
a_R	20 мм

Обозначение для заказа

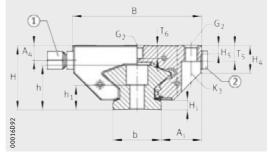
1×HLE45-W2-G1/1510-20/20, puc. 8

① сопрягаемая сторона


Рисунок 8 Пример заказа, обозначение для заказа

Несимметричное расположение отверстий

Компактная гидростатическая направляющая	HLE
Обозначение размерной серии	45
Количество кареток на одном рельсе	W2
Класс точности	G1
Длина направляющего рельса	1 540 мм
a _L	50 mm
a _R	20 mm


Обозначение для заказа

1×HLE45-W2-G1/1540-50/20, puc. 9

сопрягаемая сторона

Рисунок 9 Пример заказа, обозначение для заказа

HLE45 ①, ② ¹⁾

Ta	Таблица размеров · Размеры в мм														
Условное обозна-	Каретка		Рельс			Размер	Размеры				Присоединительные размеры				
че	ение	Условное обозна- чение	Macca m ≈ĸr	Условное обозна- чение	Macca m ≈ĸr	Заглушки рельса	l _{max} ²⁾	Н	В	L	A ₁	J _B	-0,005 -0,035	L ₁	L _S
HL	.E45	HLW45	6	TSH45	12,4	KA20-M	5 900	60	120	226,5	37,5	100	45	134,2	2,2

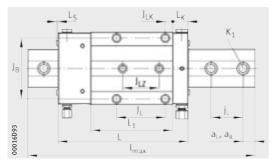
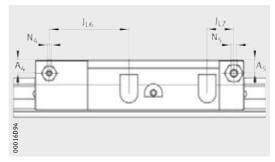
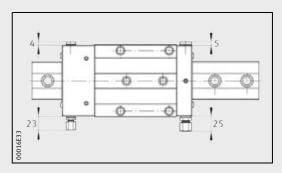

^{1) 1} штуцер

Таблица р	Таблица размеров (продолжение) · Размеры в мм													
Условное	Крепежн	ые винты				Расположение гидравлических подключений								
обозна- чение	G ₂		K ₁	K ₃			A ₄	N ₄	J _{L6}	A ₅	N ₅	J _{L7}		
	DIN ISO 4	4762-12.9)											
		M _A		M _A		M _A								
		Нм		Нм		Нм								
HLE45	M12	140	M12	140	M10	83	13,8	4	81,6	13,8	6	27,3		


② заглушка Расположение штуцеров и заглушек может быть изменено.

Поставляются только цельными с максимальной длиной рельса 5 900 мм. Стыковка направляющих рельсов не допускается.

 $^{^{3)}\,\,}a_{L}\,u\,\,a_{R}\,$ зависят от длины направляющего рельса.



Гидравлическое подключение сбоку

														Грузоподъемность при 10 МПа в направлении нагрузок			
	L _K	J _L	J _{LK}	J _{LZ}	jι	a _L , a _R ³	a _L , a _R ³⁾		H ₅	H ₄	T ₅	T ₆	h	h ₁	прижи- мающая	отрыва- ющая	боковая
						мин.	макс.							±0,5	Н	Н	Н
	31	80	12,1	60	52,5	20	41	8,7	8	25,8	15	10	41,5	23	22 000	17 400	7 500

Заглушки и штуцерные соединения

000 «Шэффлер Руссланд»

Ленинградский проспект 47, стр.3 Бизнес-центр Avion 125167 Москва, Российская Федерация

Телефон +7 (495) 737-76-60 Телефакс +7 (495) 737-76-61 E-Mail info.ru@schaeffler.com Internet www.schaeffler.ru Данная брошюра была тщательно составлена и проверена на наличие ошибок. Все же мы не несем ответственность за возможные опечатки или неполноту информации. Мы оставляем за собой право внесения изменений, обусловленных техническим прогрессом.

© Schaeffler Technologies GmbH & Co. KG Издание: 2011, июнь

Перепечатка, в том числе частичная, разрешается только с нашего согласия. TPI 149 RUS-RUS