

Publisher: LuK GmbH & Co.
Industriestrasse 3 • D -77815 Bühl/Baden

Telephon +49 (0) 7223 / 941 - 0 • Fax +49 (0) 7223 / 2 69 50
Internet: www.LuK.de

Editorial: Ralf Stopp, Christa Siefert

Layout: Vera Westermann
Layout support: Heike Pinther

Print: Konkordia GmbH, Bühl
Das Medienunternehmen

Printed in Germany

Reprint, also in extracts, without
authorisation of the publisher forbidden.

Foreword

Innovations are shaping our
future. Experts predict that there
will be more changes in the fields
of transmission, electronics and
safety of vehicles over the next
15 years than there have been
throughout the past 50 years. This
drive for innovation is continually
providing manufacturers and sup-
pliers with new challenges and is
set to significantly alter our world
of mobility.

LuK is embracing these challen-
ges. With a wealth of vision and
engineering performance, our
engineers are once again proving
their innovative power.

This volume comprises papers
from the 7th LuK Symposium and
illustrates our view of technical
developments.

We look forward to some intere-
sting discussions with you.

Bühl, in April 2002

Helmut Beier

President
of the LuK Group

Content

LuK SYMPOSIUM 2002

1 DMFW – Nothing New? . 5

2 Torque Converter Evolution at LuK . 15

3 Clutch Release Systems . 27

4 Internal Crankshaft Damper (ICD). 41

5 Latest Results in the CVT Development. 51

6 Efficiency-Optimised CVT Clamping System 61

7 500 Nm CVT . 75

8 The Crank-CVT . 89

9 Demand Based Controllable Pumps. 99

10 Temperature-controlled Lubricating Oil Pumps Save Fuel . . . 113

11 CO2 Compressors . 123

12 Components and Assemblies for Transmission Shift Systems135

13 The XSG Family . 145

14 New Opportunities for the Clutch?. 161

15 Electro-Mechanical Actuators. 173

16 Think Systems - Software by LuK. 185

17 The Parallel Shift Gearbox PSG . 197

18 Small Starter Generator – Big Impact . 211

19 Code Generation for Manufacturing. 225

WESTEV
19 Code Generation for Manufacturing. 225

225LuK SYMPOSIUM 2002

Code Generation for
Manufacturing
The Electrical Central Release Bearing Software

Reinhard Ludes, AFT Werdohl
Thomas Pfund

19

19 Code Generation for Manufacturing

226 LuK SYMPOSIUM 2002

Introduction
Software plays a very significant role in auto-
motive technology these days (figure 1).

Particularly in the vehicle itself, the number
and importance of mechatronic systems,
which possess a high degree of integration of
mechanical and electronic software-based
functions, have increased markedly. The soft-
ware here performs automatic control func-
tions or automates behaviour previously per-
formed by the driver.

The systems’ functionality is growing increas-
ingly more complex, and this complexity of
system behaviour, as a result, is continuously
shifting to the software. While more and more
platforms are being used in the area of me-
chanical and electronic hardware, even
across brands, the tasks of individualising the
system and the vehicle’s characteristics are
increasingly being given to the software.

This trend is supported by the apparent ease
with which the software can be modified. It is
also encouraged by the emergence of high-
performance processor systems, which are
not only becoming more and more affordable,
but are offering ever more functions and in-
creased storage space. This is an irresistible
temptation for ambitious development teams.

But what is often overlooked is the fact that
more and more effort must be invested in soft-
ware specification, implementation and test-
ing and the validation of the entire mechatron-
ic system, both on the test-bed and in the ve-
hicle.

The reason is that the different methods of
generating software have not kept pace with
the demands made on software systems.
They have also not kept pace with the com-
plexities created or caused daily by large de-
velopment teams.

Of course there is and has been progress in
programming languages: a number of testing
methods have been established to optimise
the generation process and language exten-
sions like object-oriented programming
(OOP), which are also slowly becoming es-
tablished in the area of real time programming.
The fact remains, however, while it is making
significant contributions to control and auto-
mation, software itself is generally still written
by hand. Software development is thus still a
classical manufacturing process.

The present project takes an alternative route
in developing the software for an electrical
central release bearing. Using TDC, the ab-
breviation for Total Development Chain, by
AFT (Atlas Fahrzeugtechnik), the required
control software is generated automatically. A
full description follows.

Fig. 1: Software in Automotive Technology

software in automotive technology

control& automation of functions, tasks and procedures

in the vehicle:

• automatic control functions injection, ignition, engine management, ABS,
ASR, ESP, etc.

• automation clutch (TCI), transmission (ASG)

in development& production:

• methods& tools CAD, CAE, CAM

• automation robotics

19 Code Generation for Manufacturing

227LuK SYMPOSIUM 2002

The Standard
Development Process
for Software
The standard process for developing software
is outlined in the section to follow. Naturally,
there are many variations, but we will mention
only the major and generally typical steps here
(figure 2).

First, the control strategy is formulated based
on an idea. This can be accomplished by writ-
ing a performance specification for the control
strategy. An advanced procedure includes the
specification and all types of detailing of the
controller design using a simulation program,
where its structure and configuration is con-
tinuously improved based on models. The ad-
vantage of this method concerning written
specifications and drafts, is that it is easy for
professionals specialising in different areas,
such as systems analysis, control and simu-
lation to discuss the control unit model.

Once the control or automation function – at
least in the area of simulation – has reached
a sufficient level, in the classical method, it is
now the software expert – whose qualifica-
tions come from the area of real-time software
and microcontroller design – who is ultimately
responsible for the implementation.

The basic controller concept is the beginning
of a software expert’s work. They must also
first analyse the task given to them and create
an appropriate design concept for the real-
time system before they can even begin to
think about implementation, i.e., translating
the functions into concrete code. The reason
for this break, or gap in the process, as can
also be seen in the diagram, is the existence
of different points of view, which are ex-
pressed in different model approaches.

In controller design, the main consideration is
the object to be controlled, such as, in the cur-
rent case, the control motor as the actuator
and the clutch as the controlled system.

Fig. 2: Standard Development Process for Software

19 Code Generation for Manufacturing

228 LuK SYMPOSIUM 2002

Fig. 3: AFT TDC in the Development Process

All models are oriented in this way. In real-time
software design, as in any other software de-
sign, the architecture of the computer or mi-
crocontroller system is the main issue. The
models used as the basis are thus primarily
oriented toward the standard architecture of
computer cores or processors (Von-Neumann
machines), and all standard procedural pro-
gramming languages are designed on this ba-
sis.

The severity of this break is different, and de-
pends on the languages and methods used.
The break is, however, part of the basic nature
of the task. Only object-oriented programming
shows a way to eliminate this.

There are several approaches for working
around this break. Above all, the effects de-
pend on the development process; how well
the communications between the two basic
developer types work.

At LuK, for example, we have been successful
in providing both qualifications at the same
time in the team or with individual developers.
In addition, code segments are transferred
from the offline simulation to the source code
level in the control software.

Code Generation in the
Development Process
In this project, we have taken the road of au-
tomatic code generation. The code generator
used here takes the controller’s model, or sim-
ulation-based specification, and generates
close-to-production real-time code for the mi-
crocontroller in the automotive control unit.
This is therefore a seamless path; from the
specification of the general, to the detailed
strategy, to the real-time code in the control
unit (figure 3).

This approach is in line with LuK’s philosophy
of using only one expert or group of experts
to design and implement the entire system. It
is also the system engineer who designs the
control unit in the classical method. The
knowledge of how to generate the optimum
code is implicitly present in the code genera-
tor. The functions relating to the vehicle or one
of its components are thus kept in mind from
the beginning on. The processor, the pro-
gramming language and the operating system
that are used in the concrete application re-
main in the background.

19 Code Generation for Manufacturing

229LuK SYMPOSIUM 2002

The break in the specification or the entire de-
velopment chain is overcome.

Using TDC in Electric
Central Release
Bearing Engineering:
The Closed Tool Chain
The use of the AFT TDC means more than just
using a code generator. TDC reflects a heter-
ogeneous, but closed chain of tools, which
supports the entire development process.
Heterogeneous, because different tools are
used together – in fact the exact tools that are
best suited for the specific project. Closed, be-
cause the results of the test are fed back in to
improve the original model in a gradual evo-
lution (figure 4).

In this project, we used MATLAB®-Simulink
for simulation, TargetLink for code generation,
AFT PROST as a suitable prototype control
unit, and MARC I for recalibration in the test

phase. It is also worth noting that this data,
which is used for calibration, i.e., fine-tuning,
is already specified in the simulation software.
For the calibration system, description files
are also generated (according to ASAP 2),
which are automatically read into the calibra-
tion system. The test engineer therefore does
not need to perform any additional configura-
tion to his calibration system.

The data obtained during the calibration can
also be worked into the simulation model for
fine-tuning the model. Furthermore, the meas-
ured data obtained in the test can be fed back
into the simulation from the calibration system
or from additional installed measuring sys-
tems. The dataloggers RAMboX™ and
TORnadO® are available at LuK for this pur-
pose and are currently in use.

Finally, only the code generator and a series
of expansions to the calibration system had
to be installed in addition to be able to form
the development chain as described. All ad-
ditional tools were on hand and known to the
developers.

Fig. 4: Characteristics of AFT TDC: Example – LuK Electric Central Release Bearing

19 Code Generation for Manufacturing

230 LuK SYMPOSIUM 2002

The Electric Central
Release Bearing
Project as Reflected
in the V Model
As indicated in the previous illustration, TDC
reflects a development method that goes be-
yond pure code generation. It is a simulation-
based development method with executable
specifications. The entire chain is based on the
V model. Figure 5 shows the implementation of
the V model with all components that are used
at AFT to develop software for control devices.

The following are characteristic of the V model
as the basis of the development strategy:

� Each design step on the left has a corre-
sponding test and validation step shown op-
posite on the right.

� Transfers and tests are required between
the steps on the left side to ensure that the
specifications given in the previous step are
also fulfilled.

� This also means that the later an error is de-
tected, the more steps must be rerun during
the redesign, i.e., the more difficult and ex-
pensive correction becomes. Basic specifi-
cations that are not or are improperly met,
which can then be discovered only in the fi-
nal step, are thus especially critical.

The left side shows the two significant design
steps:

� Specifications phase – the system specifica-
tions are made to provide clear definitions, in
some cases based on the simulation mod-
els and automatic condition generators.

� Model generation – based on the system
specification and any existing partial mod-
els, a structure that can be simulated is gen-
erated, embedded in a more or less exact
plant model.

Both steps use MATLAB® SimuLink, first for
the rough system structures and specifica-
tions and in the second step, the entire model
of the control unit and controlled system is de-
fined in detail.

Fig. 5: Electric Central Release Bearing Project Reflected in the V model

19 Code Generation for Manufacturing

231LuK SYMPOSIUM 2002

The process ends in the peak of the V model
with auto-code generation on the specific tar-
get system. Thus the original control unit spec-
ification is not only executable in a simulated
environment, but also on a control unit as the
target system. The entire chain is continuous.

On the right side, across from the two design
steps are the corresponding test and valida-
tion steps:

� Model-verification, i.e., validation of the ba-
sic control function, in the SIL simulation
(SIL = software in the loop) or if applicable
already in a HIL system (HIL = hardware in
the loop).

� Total system verification on the test stand or
test section.

The controller is first tested in an SIL simula-
tion. In the SIL simulation, all interfaces to the
specified software are depicted as models, so
that the simulation can run without any addi-
tional hardware expense. The system sup-
ports this process in that the I/O interfaces to
the controller – operating system are available
as TargetLink – blocks and that a simulation
is possible both with floating decimal and fixed
decimal arithmetic.

A HIL system is used for model verification
when individual components of the controlled
system cannot, or can only with great effort,
be represented in the simulation environment.
However, at the same time a test in the entire
system, e.g. due to high application expense,
is not or not yet economically feasible. It must
also be decided on a case-by-case basis
which parts in the controlled system must be
physically present and which can be repre-
sented as a software model.

No decision must be made for the control unit,
whether it will be ‘operated’ for real or in the
real-time simulated controlled system. It is
worth noting that in this simulation-based de-
velopment process, the system model re-
quired for the HIL simulator is largely already
available from the system specification step.
In the project described here, the main partial
systems were installed on a test stand (central
release bearing against non-rotating clutch,

PROST control unit and higher-level TCI con-
trol unit).

The system verification is based on the overall
system design. If the behaviour of the clutch
is determined in the vehicle, the validation
must also be completed in the vehicle or in a
vehicle-adequate system environment. In this
case too, the final verification was performed
in the vehicle.

Thus, all stations of the V model were run in
this project.

Additionally, the measured data that was ob-
tained in the control design stage and in the
final test was fed back.

Results, Part I: The
Controller Structure
The specification of the controller consisted at
first consisted of the initial rough blocks, which
were then filled out in refinements and param-
eter configurations. The blocks can be output
graphically directly with their links (signal
paths) and thus can support an optimal spec-
ification and documentation:

� the target and actual value calculation for
the controller

� the condition controller as the core

� the pre-control to raise the adjustment dy-
namics

� the logic, which differentiates different basic
conditions (e.g. normal, ‘limp-home’ and test
operation)

� the follow-up functions, which encompass
different engagement and disengagement
procedures

� the block ‘set outputs’ for checking limit val-
ues and adjusting to the hardware

� the block ‘measured values on CAN’ as a
control function during the test phase

A graphic display will be created automatical-
ly. The integration at this point, however, is
such that it is far too extensive and detailed.
Each block can be further broken down to

19 Code Generation for Manufacturing

232 LuK SYMPOSIUM 2002

show more detail. The controller as an entire
system is once more a block in the entire of-
fline simulation model, in which the remaining
components of the controlled system are rep-
resented: end stage, electric motor, the belt
gears and the clutch itself.

Since the controller’s specifications finally end
in a controller model that can run both ‘against’
the model of the controlled system in the sim-
ulation and after code generation in the control
unit ‘against’ the real controlled system, it is
an executable specification.

When the controller is in a real control unit after
code generation, the generated software ac-
cesses the same input and output interfaces
as it already showed in the model. The inter-
face to the system software then makes up the
AFT controller interface (ACI).

Results, Part II:
Savings Potential
Three man-months were originally planned to
generate the controller for the electric central re-
lease bearing: to design the simulation, imple-
ment the code and for initial testing. The project
was completed two weeks after the project’s
start using the new method. The new method
also required a total of three man-months.

No control group was defined, which solved
the same problem using conventional meth-
ods. There is, however, sufficient experience
with the definition and execution of such
projects, that we can assume that approximate-
ly the same amount of work was required.

Some of the effort certainly went into breaking
in the new tools. The first decision was made
after two weeks to change the method which
cost a few extra hours, since the simulation
models had to be readjusted to the real-time
requirements.

It is estimated that the development time for
trained employees can be reduced about 50%
to 1.5 man-months. This results first from an
analysis of the time records and secondly from
the back-calculation: According to experi-

ence, 1.5 man-months are required to write
the coding for the controller, including testing
and configuration of the calibration system, an
expense that is eliminated with the new method.

The possible ratio effect is thus a good 50%
and results from eliminating the generation of
the controller code and the time used for fine-
tuning in the test phase, which is required to
configure the calibration system.

It should be mentioned that validation steps re-
quired for production release (functional contin-
uous operation, code inspection, etc.) were not
included in the time estimate. If these were taken
into account, the ratio effect would be reduced.

It is very important to establish at this point that
this is not a purely functional representation on
a high-performance automotive test system.

The AFT PROST prototype control unit includes
a standard microcontroller with fixed-point arith-
metic, suitable for production. Likewise, the gen-
erated code is transferable to a conventional
production unit without any great effort.

This design, because it is closer to production
than other systems that are based on high-
performance floating-point processors and
only allow a functional depiction in a prototype
vehicle, is thus far superior.

Answers to Frequently
Asked Questions

What is the Source of the Ef-
fectiveness of the Code
Generator?
What is it Based on?
The effectiveness is based on the execution
time of the generated code. It is between 0.9
and 1.2 times that of hand-written code, ac-
cording to the manufacturer’s specifications.
This is an excellent amount, since previous
code-generators generated code with 2.5 to
3 times the runtime. Even in the worst case
scenario, 20% additional runtime is absolutely

19 Code Generation for Manufacturing

233LuK SYMPOSIUM 2002

acceptable. It requires approximately the
same memory space as hand-written code.

This information was not tested in the course
of this project; the same tasks would have had
to be performed by experienced programmers
at the same time. However, the runtimes and
file sizes are within the expected ranges.

There are essentially three reasons for this
run-time efficiency:

First there is the use of special codes of the
target processor that are not available to C
programmers. Second, the code generator
implicitly has much special knowledge of the
efficient programming of the target processor
and the operating system environment used,
which a code-writer would first have to pains-
takingly establish. Furthermore, with proper
handling of the tools, the variables are scaled
to the value range used. This allows the use
of favourable multiplication and division oper-
ations, which would otherwise require a great
deal of time. The scaling can be done auto-
matically or by indicating the value range.

Is the Generated Code
Readable?
The code is readable. Variable names are like-
wise taken over in a changed, but readable

form. A prefix or suffix is simply added to con-
nect the data structure with the higher-level
system structure.

Certainly this question is related to the fact that
there is a certain level of mistrust on the part
of developers with regard to generated code.
Even code generated by high-level language
compilers is not generally subject to inspec-
tion by the developers.

How Can I Work with
Projects that Go Back to
Existing Code?
AFT TDC has particular advantages over oth-
er development tools in this area: There are
generally three sources (figure 6):

1. Code generation from the SimuLink mod-
els as previously described.

2. Adding hand-written code in addition.

3. The option to integrate code from other
projects.

In all cases, if the conventions are followed,
even the parameter-setting for the calibration
system, i.e. the description data of the control
unit, can be generated.

Fig. 6: An Advantage of AFT TDC: Code Mixing

19 Code Generation for Manufacturing

234 LuK SYMPOSIUM 2002

To What Extent is the Gener-
ated Code Suitable for
Production?
As mentioned previously, the code is nearly
production-ready, since it is generated for con-
ventional microprocessors as the target sys-
tem. The function unit used – the automotive
prototype control unit AFT PROST – is like-
wise close to production-ready. The results
are thus transferable to the subsequent series
development 1:1.

Summary and Outlook
Figure 7 summarised once more the general
advantages of a closed development chain
and the specific advantages of AFT TDC.
These advantages originate from the typical
characteristics, also shown.

The development of the central release bear-
ing software was a pilot project, which the per-
formance capabilities of the AFT TDC for the
design and generation of the control unit pro-
duction code covered. At LuK Bühl, the current
thinking is, after this pre-development project,
to also run a pilot project in production devel-
opment.

Other AFT projects have been completed suc-
cessfully in the past. These include projects
for DaimlerChrysler research, who – after ap-
propriate training of their employees – have
since used the same tools and methods for
their own development projects.

AFT carries out other projects as engineering
service, using AFT TDC as the method and
tool to complete projects quickly and cost-ef-
ficiently. These also include the development
of control unit software for LuK-FH in Bad
Homburg.

Fig. 7: Summary

summary

general features of TDC: general advantages of TDC:

• General simulation-based development pro-
cess from initial design to implementation,
including all test phases (SIL, HIL, applicati-
on and testing)

• High-level design (model-based graphics)
• Executable specification
• Implicit documentation
• Expertise real-time system, partially in code

generator

• shorter development times
• reduction of possible error sources
• cost-reductions
• shifting the required expertise to the system

engineer
• tested intermediate results in each develop-

ment step

basic characteristics of AFT TDC: specific advantages of AFT TDC:

• Heterogeneous system
• Combination of the best components that

have proven themselves as standard:
MATLAB®/SimuLink®, code generator by
dSPACE, MARC I, RAMboX™, TORnadO®

• adaptable to changing standards
• can be integrated into existing projects:

combination or mixture of hand-coded and
automatically generated code

• adaptable to individual requirements by
combining for the customer

• production-ready code

This book
7th LuK Symposium
is intendend only for your personal use!

