

Kreuzrollenlager

für Genauigkeitsanwendungen

Diese technische Schrift wurde mit großer Sorgfalt erstellt und alle Angaben auf ihre Richtigkeit hin überprüft. Für etwaige fehlerhafte oder unvollständige Angaben kann jedoch keine Haftung übernommen werden.

Produktabbildungen dienen nur zur Veranschaulichung und Δ sind nicht zur Konstruktion zu verwenden.

Konstruktionen nur nach technischen Angaben, Maßtabellen und Maßzeichnungen in dieser Ausgabe gestalten. In Zweifelsfällen bitte Rücksprache mit dem INA-Ingenieurdienst.

Durch die ständige Weiterentwicklung der Produkte sind Änderungen im Produktprogramm und der Produktausführung vorbehalten!

Es gelten die Verkaufs- und Lieferbedingungen, die den Verträgen und Rechnungen zugrunde liegen.

Herausgeber:
INA-Schaeffler KG
91072 Herzogenaurach
Hausadresse:
Industriestraße 1–3
91074 Herzogenaurach
www.ina.com

© by INA · 2004, September
Alle Rechte vorbehalten.
Nachdruck, auch auszugsweise,
ohne unsere Genehmigung nicht gestattet.
Druck: mandelkow GmbH, 91074 Herzogenaurach
Printed in Germany

INA-Kreuzrollenlager SX sind seit langem die technisch und wirtschaftlich beste Lösung, wenn kompakte, montagefreundliche Lager mit hoher Kippmoment-Tragfähigkeit, Steifigkeit und Genauigkeit in einer Lagerstelle gefordert sind. Denn diese Lager nehmen radiale Belastungen, axiale Belastungen aus beiden Richtungen, Kippmomente und beliebige Lastkombinationen auf. Deshalb können herkömmliche Lagerungen mit Radial- und Axiallagern in der Regel auch auf eine Lagerstelle reduziert werden. Dadurch verringern sich Aufwand und Kosten für die Gestaltung der Anschlusskonstruktion und den Einbau der Lager teilweise erheblich.

Um die Kundenvorteile und das Anwendungsspektrum für Lagerungen mit Kreuzrollenlagern weiter zu erhöhen, hat INA nun das Produktprogramm der Kreuzrollenlager im mittleren und kleinen Durchmesserbereich um folgende Baureihen erweitert:

- Kreuzrollenlager XSU 08
 - diese Kreuzrollenlager sind vorgespannt, die Lagerringe werden direkt mit der Ober- und Unterkonstruktion verschraubt
- Kreuzrollenlager XV
 - bei diesen Kreuzrollenlagern wird über den geteilten Innenring und eine Nutmutter das Lagerspiel eingestellt bzw. das Lager vorgespannt, der Außenring einfach an die Anschlusskonstruktion geschraubt.

Durch diese neuen Baureihen können Kreuzrollenlager jetzt noch flexibler eingesetzt werden, beispielsweise in Werkzeugmaschinen, Hebezeugen, Förderanlagen und Fahrzeugkomponenten, in feinmechanischen und medizinischen Geräten, vor allem jedoch in Robotern und Handlingsystemen.

Die vorliegende Druckschrift KSX wurde gegenüber der früheren Auflage komplett überarbeitet. Sie informiert über das Standard-Programm der bewährten Kreuzrollenlager SX und die neuen Baureihen XSU und XV. Angaben in Auflagen, die mit den Angaben in dieser Auflage nicht übereinstimmen, sind damit ungültig.

INA-Schaeffler KG Herzogenaurach

Produktprogramm

Übersicht/Vergleich

Eigen-	Bohrungs- durchmesser	Tragfähiake	agfähigkeit ¹⁾ Kipp- steifigkeit ^{1) 2)} Kipp- steifigkeit ^{1) 2)} radial avial		Reibung ^{1) 2)}			
Eigen- schaft Kreuz- rollenlager		radial stat.	beidseitig axial stat.	Kippmoment stat.	steifigkeit ^{1) 2)}	radial	axial	
SX	70 mm bis 500 mm							
xv	30 mm bis 110 mm							
			ŀ				ı	
XSU 08	130 mm bis 360 mm							
							ı	
XSU 14	344 mm bis 1024 mm							

[■] Ausführung der Kreuzrollenlager.

¹⁾ Die Angaben beziehen sich auf den kleinsten und größten Lagerdurchmesser.

max. Umfangsges	schwindigkeit bei	Lagerspiel			beidseitig	Betriebstemperatur	Rostschutz ³⁾	Merkmale	
Fettschmierung	Ölschmierung	Normalspiel	spielarm RL0	vorgespannt	abgedichtet			siehe Seite	
4 m/s (n · D _M = 76 400) bei Normalspiel 2 m/s	8 m/s (n · D _M = 152800) bei Normalspiel 4 m/s			-		–30 °C bis +80 °C		44	
(n · D _M = 38 200) bei Vorspannung	(n · D _M = 76 400) bei Vorspannung								
2 m/s (n · D _M = 38 200) bei Vorspannung	4 m/s (n · D _M = 76 400) bei Vorspannung	einstellbar vo	n spielfrei bis	Vorspannung		–30 °C bis +80 °C		44	
2 m/s (n · D _M = 38 200) bei Vorspannung	4 m/s (n · D _M = 76 400) bei Vorspannung					–30 °C bis +80 °C		45	
2 m/s (n · D _M = 38 200) bei Vorspannung	4 m/s (n · D _M = 76 400) bei Vorspannung					−30 °C bis +80 °C		45	

Ermittelt bei 20% des maximal zulässigen Kippmoments, ohne Axial- und Radialbelastung und bei mittlerer Vorspannung.
 Sonderausführung mit INA-Spezialbeschichtung Corrotect[®]. Auf Anfrage lieferbar.

Inhaltsverzeichnis

Seite	
6	Verzeichnis der Bauformen
7	Verzeichnis der Nachsetzzeichen
8 8 8 8	Bestellbezeichnung Bestellbeispiel Kurzzeichen Nachsetzzeichen Bestellbeispiel, Bestellbezeichnung
9	Bezeichnungen und Einheiten
10 10 10 10 12 12 13 14 14 14 14 16 17	Tragfähigkeit und Lebensdauer Statische Tragfähigkeit Definition der statischen Tragfähigkeit Statische Tragfähigkeit überprüfen Anwendungsfaktoren Sicherheitsfaktoren Berechnungsbeispiel Dynamische Tragfähigkeit Definition der dynamischen Tragfähigkeit Definition der nominellen Lebensdauer Nominelle Lebensdauer ermitteln Einflüsse auf die Gebrauchsdauer der Kreuzrollenlager Berechnungsbeispiel
18 18 18 18 18 18 19	Befestigungselemente Statische und dynamische Tragfähigkeit der Befestigungsschrauben INA-Präzisions-Nutmuttern Bedingungen zur Überprüfung der Tragfähigkeit Maß für die Tragfähigkeit Statische Grenzlastdiagramme Statische Tragfähigkeit überprüfen Dynamische Tragfähigkeit überprüfen INA-Präzisions-Nutmuttern
20 20 20 21 21 23 24 24 24 25 25	Schmierung Grundlagen Schmierungsarten Fettschmierung Kriterien für die Wahl des Schmierfettes Erstbefettung Schmierfristen Fettgebrauchsdauer Nachschmiervorgang Ölschmierung Wahl des Schmieröls

Seite	
26 26	Abdichtung der Lagerung INA-Dichtungsprofile
28 28 28 29 30 30 32 33 33	Gestaltung der Lagerung Abdichtung der Lagerstelle Befestigungsschrauben Kreuzrollenlager SX Befestigung durch Klemmringe Lagersitztiefe Kreuzrollenlager XV Kreuzrollenlager XSU Zulässige Ebenheits- und Rechtwinkligkeitsabweichung der Anschlusskonstruktion
34 34 34 35 37 37 38 38 39 40 41 42 42 42	Vorbereitungen zum Einbau Montageplatz gestalten Anschlusskonstruktion zum Einbau der Lager vorbereiten Lagersitz- und Lager-Anschraubflächen an der Anschlusskonstruktion kontrollierer Lieferausführung der Kreuzrollenlager Kreuzrollenlager aufbewahren/Lagerfähigkeit Kreuzrollenlager auspacken/Lager transportieren Befestigungselemente auswählen Schraubensicherungen Allgemeine Sicherheits- und Verhaltensrichtlinien Kreuzrollenlager einbauen Kreuzrollenlager SX einbauen Kreuzrollenlager XV einbauen Kreuzrollenlager XSU einbauen Funktion prüfen Laufgenauigkeit Drehwiderstand Lagertemperatur
44 44 48	Kreuzrollenlager Merkmale Maßtabellen
46 58	Präzisions-Nutmuttern Merkmale Maßtabellen
	Anwendungsbeispiel
	INA-Adressen
	Datenblatt KRF (zum heraustrennen) Kreuzrollenlager zur Angebotsbearbeitung

Verzeichnis der Bauformen

Alphanumerisch sortiert

Seite	Bauform	Bezeichnung
44	SX	Kreuzrollenlager, entsprechend der Maßreihe 18 nach DIN 616, nicht abgedichtet, befettet, mit Spiel, spielarm oder vorgespannt, Außenring in Umfangsrichtung gesprengt und durch drei Halteringe zusammengehalten
45	XSU	Kreuzrollenlager, beidseitig abgedichtet, befettet, vorgespannt, Zentrierung am Innen- und Außendurchmesser, Lagerringe direkt an die Anschlusskonstruktion anschraubbar
44	XV	Kreuzrollenlager, beidseitig abgedichtet, befettet, mit Spiel, vorspannbar durch Nutmutter, Innenring in Umfangsrichtung geteilt, Außenring direkt an die Anschlusskonstruktion anschraubbar

Verzeichnis der Nachsetzzeichen

Nachsetzzeichen Bedeutung

RL0 | spielarme Ausführung VSP | Lager mit Vorspannung

RR rostgeschützte Ausführung durch INA-Spezialbeschichtung Corrotect®

Bestellbezeichnung

Bestellbeispiel

Die Bestellbezeichnung beschreibt das Kreuzrollenlager in Kurzform.

Sie besteht aus:

- dem Kurzzeichen
- Nachsetzzeichen
 - nur für besondere Lagermerkmale.

Kurzzeichen (Bild 1)

Jedes Kreuzrollenlager hat ein Kurzzeichen. Dieses Zeichen ist in den *Maßtabellen* angegeben und beschreibt die Normalausführung des Lagers.

Das Kurzzeichen besteht aus mehreren Teilen. Es kennzeichnet – beispielhaft am Kreuzrollenlager SX dargestellt:

- die Bauform
 - Kreuzrollenlager SX
- die Baureihe
 - Reihe 01
- die Maßreihe
 - Maßreihe 18 nach DIN 616
- den abmessungsbezogenen Teil
 - Baugröße 24.

Nachsetzzeichen (Bild 2)

Nachsetzzeichen stehen hinter dem abmessungsbezogenen Teil.

Sie kennzeichnen:

- das Lagerspiel bzw. die Vorspannung
 - z.B. VSP für vorgespannte Lager
- die Sonderausführung
 - z.B. RR für rostgeschützte Ausführung.

Bestellbeispiel, Bestellbezeichnung (Bild 3)

Kreuzrollenlager SX Reihe 01

Maßreihe 18 nach DIN 616

Baugröße 24 mit Vorspannung VSP rostgeschützt RR.

Bestellbezeichnung:

SX 01 1824 VSP RR.

Reihenfolge der Zeichen bei der Bestellung einhalten!

Bild 1 · Kurzzeichen

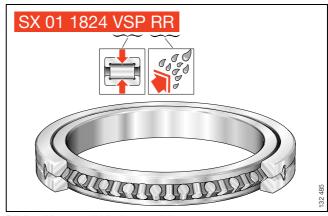


Bild 2 · Kurz- und Nachsetzzeichen

Bild 3 · Bestellbeispiel, Bestellbezeichnung

Bezeichnungen und Einheiten

Soweit im Text nicht ausdrücklich anders vermerkt, haben die in diesem Katalog verwendeten Größen folgende Bezeichnungen, Einheiten und Bedeutungen.

C C ₀	N N	dynamische Tragzahl statische Tragzahl
D_M D_W	mm mm	Wälzkörper-Mittenkreisdurchmesser Wälzkörperdurchmesser
$\begin{array}{l} f_{A} \\ f_{S} \\ f_{Or} \\ F_{a} \\ F_{aB} \\ F_{r} \\ F_{Oa} \\ F_{Oq} \\ F_{Or} \end{array}$	- - kn kn kn kn kn	Anwendungsfaktor Faktor für zusätzliche Sicherheit statischer radialer Lastbeiwert dynamische Lagerbelastung (axial) axiale Bruchlast dynamische Lagerbelastung (radial) statische Lagerbelastung (axial) äquivalente Lagerbelastung (statisch) statische Lagerbelastung (radial)
k _F L	– 10 ⁶ Umdr.	dynamischer Lastfaktor nominelle Lebensdauer in Millionen Umdrehungen
L _h	h	nominelle Lebensdauer in Betriebsstunden
M_AL	Nm	Anziehdrehmoment für Nutmutter
M _L M _M M _k M _m M _{Ok} M _{Oq}	Nm kg · cm ² kNm Nm kNm kNm	Losbrechmoment bei M _{AL} Massenträgheitsmoment dynamische Kippmomentbelastung Anziehdrehmoment für Gewindestifte statische Kippmomentbelastung äquivalente Kippmomentbelastung (statisch)
M _M M _k M _m M _{Ok}	kg · cm ² kNm Nm kNm	Massenträgheitsmoment dynamische Kippmomentbelastung Anziehdrehmoment für Gewindestifte statische Kippmomentbelastung
M_{M} M_{k} M_{m} M_{0k} M_{0q}	kg · cm ² kNm Nm kNm kNm min ⁻¹	Massenträgheitsmoment dynamische Kippmomentbelastung Anziehdrehmoment für Gewindestifte statische Kippmomentbelastung äquivalente Kippmomentbelastung (statisch) Betriebsdrehzahl des Kreuzrollenlagers
M _M M _k M _m M _{Ok} M _{Oq} n n _{osz} p P _{axial}	kg · cm ² kNm Nm kNm kNm min ⁻¹ min ⁻¹	Massenträgheitsmoment dynamische Kippmomentbelastung Anziehdrehmoment für Gewindestifte statische Kippmomentbelastung äquivalente Kippmomentbelastung (statisch) Betriebsdrehzahl des Kreuzrollenlagers Frequenz der Hin- und Herbewegung Lebensdauerexponent dynamisch äquivalente axiale Lagerbelastung

Tragfähigkeit und Lebensdauer

Statische Tragfähigkeit

Die erforderliche Größe eines Kreuzrollenlagers hängt ab von den Anforderungen an seine:

- statische und dynamische Tragfähigkeit
- Lebensdauer
- Betriebssicherheit.

Dynamische Tragfähigkeit, siehe Seite 14.

Definition der statischen Tragfähigkeit

Kreuzrollenlager mit selten auftretenden Drehbewegungen, mit langsamen Schwenkbewegungen, Lager, die nur langsam umlaufen sowie im Stillstand belastete Lager werden nach ihrer statischen Tragfähigkeit dimensioniert, da die zulässige Belastung hier nicht durch die Ermüdung des Werkstoffs bestimmt wird, sondern durch die belastungsbedingten Verformungen an den Kontaktstellen zwischen Wälzkörpern und Laufbahnen.

Das Maß für die statische Tragfähigkeit sind:

- \blacksquare die statischen Tragzahlen C₀ (siehe *Maßtabellen*)
- die statischen Grenzlastdiagramme Laufbahn und Befestiaunasschrauben (siehe Maßtabellen und Berechnungsbeispiel, Seite 13).

Die Größe eines statisch beanspruchten Kreuzrollenlagers für eine bestimmte Anwendung kann damit näherungsweise durch die statischen Tragzahlen C₀ und die statischen Grenzlastdiagramme überprüft werden.

Statische Tragfähigkeit überprüfen

Die statische Tragfähigkeit kann näherungsweise nur überprüft werden, wenn:

- eine Lastanordnung nach Bild 1 vorliegt
- alle in dieser Druckschrift genannten Anforderungen erfüllt sind, bezüglich
 - Klemmringe, Flanschringe und Befestigung
 - Einbau, Schmierung und Abdichtung

Bei komplexeren Lastanordnungen oder Abweichungen von den Bedingungen bitte bei INA rückfragen.

Zur überprüfung der statischen Tragfähigkeit müssen die folgenden statisch äquivalenten Betriebswerte ermittelt

- die statisch äquivalente Lagerbelastung F_{0a}
- die statisch äquivalente Kippmomentbelastung M_{0a}.

Die Überprüfung ist für Anwendungen ohne und mit vorhandener Radiallast möglich.

Statisch äquivalente Lagerbelastung bei fehlender Radiallast ermitteln und statische Tragfähigkeit im statischen Grenzlastdiagramm Laufbahn überprüfen

Treten nur Axial- und Kippmomentbelastungen auf, dann gilt:

$$f_{0q} \triangleq F_{0a} \cdot f_A \cdot f_{\xi}$$

$$M_{0q} \triangleq M_{0k} \cdot f_A \cdot f_{\xi}$$

 F_{0q} kN äquivalente axiale Lagerbelastung (statisch)

statisch axiale Lagerbelastung

Anwendungsfaktor (siehe Seite 12, Tabelle 1)

Faktor für zusätzliche Sicherheit

statischer radialer Lastbeiwert (siehe Bild 1)

kNm

äquivalente Kippmomentbelastung (statisch)

 M_{0k} kNm

statische Kippmomentbelastung.

Mit den Werten von F_{0q} und M_{0q} Lastpunkt im statischen Grenzlastdiagramm Laufbahn bestimmen. Der Lastpunkt muss unterhalb der Laufbahnkurve liegen!

Zusätzlich zur Laufbahn auch die Dimensionierung der Befestigungsschrauben überprüfen (siehe Berechnungsbeispiel, Seite 13)!

Statisch äquivalente Lagerbelastung bei vorhandener Radiallast ermitteln und statische Tragfähigkeit im statischen Grenzlastdiagramm Laufbahn überprüfen

Radiallasten können nur berücksichtigt werden, wenn die Radiallast F_{Or} kleiner ist, als die radiale statische Tragzahl C_0 nach *Maßtabelle*!

- \blacksquare Kennwert der Lastexzentrizität ϵ nach Gleichung berechnen.
- Statisch radialen Lastbeiwert f_{0r} ermitteln. Dazu:
 - Verhältnis F_{0r}/F_{0a} in Bild 1 bestimmen
 - aus dem Verhältnis F_{0r}/F_{0a} und ϵ statisch radialen Lastbeiwert f_{0r} aus Bild 1 ermitteln.
- Anwendungsfaktor f_A nach Tabelle 1, Seite 12 und eventuell notwendigen Sicherheitsfaktor f_S bestimmen.
- Äquivalente axiale Lagerbelastung F_{0q} und äquivalente Kippmomentbelastung M_{0q} nach Gleichungen berechnen.
- Mit den Werten von F_{0q} und M_{0q} Lastpunkt im statischen Grenzlastdiagramm Laufbahn ermitteln (siehe Berechnungsbeispiel, Seite 13). Der Lastpunkt muss unterhalb der Laufbahnkurve liegen!

$$\epsilon = \frac{2000 \cdot M_{0k}}{F_{0a} \cdot D_{M}}$$

 $F_{0q} \quad F_{0a} \cdot \ f_A \cdot \ f_S \cdot \ f_C$

 $M_{0q} \ M_{0k} \cdot \ f_A \cdot \ f_S \cdot \ f_C$

Kennwert der Lastexzentrizität

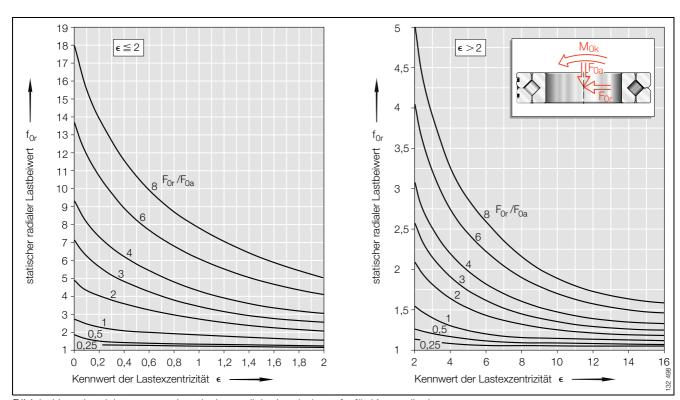
kNm

statische Kippmomentbelastung

F_{0a} kN statische Lagerbelastung (axial)

 ${\sf D_M}$ mm Wälzkörper-Mittenkreisdurchmesser (*Maßtabellen*)

kΝ


 F_{0q} kN äquivalente Lagerbelastung (statisch)

f_A – Anwendungsfaktor (siehe Seite 12, Tabelle 1)

 f_S – Faktor für zusätzliche Sicherheit

 $\rm f_{Or} - \\ statischer radialer Lastbeiwert (siehe Bild 1)$

 ${
m M_{0q}}$ kNm äquivalente Kippmomentbelastung (statisch).

 $\textbf{Bild 1} \cdot \text{Hauptlastrichtungen und statischer radialer Lastbeiwert } f_{0r} \text{ für Kreuzrollenlager}$

Tragfähigkeit und Lebensdauer

Statische Tragfähigkeit

Anwendungsfaktoren

Die Anwendungsfaktoren f_A nach Tabelle 1 sind Erfahrungswerte aus der Praxis. Sie berücksichtigen die wichtigsten Anforderungen – z.B. Art und Schwere des Einsatzes, Steifigkeit oder Laufgenauigkeit.

Sind genaue Anforderungen für eine Anwendung bekannt, können die Werte entsprechend verändert werden.

Anwendungsfaktoren <1 dürfen nicht eingesetzt werden! Ein großer Teil der Anwendungen kann mit dem Anwendungsfaktor 1 statisch berechnet werden – z.B. Lager für Getriebe, Drehtische.

Wir empfehlen neben der statischen Berechnung auch immer die Lebensdauer zu überprüfen (*Dynamische Tragfähigkeit*, Seite 14).

Tabelle 1 · Anwendungsfaktoren f_A zur Ermittlung der äquivalenten Lagerbelastung (statisch)

Anwendung	Einsatz-/ Anforderungskriterien	Anwendungs- faktor
		f_A
Roboter	Steifigkeit	1,25
Antennen	Genauigkeit	1,5
Werkzeugmaschinen	Genauigkeit	1,5
Messtechnik	Laufruhe	2
Medizintechnik	Laufruhe	1,5

Sicherheitsfaktoren

Der Faktor für eine zusätzliche Sicherheit $f_S = 1$.

Im Normalfall muss bei der Berechnung keine zusätzliche Sicherheit eingerechnet werden.

In Sonderfällen – z.B. Abnahmespezifikationen, werksinternen Vorschriften, Vorgaben von Prüfungsgesellschaften usw. – entsprechenden Sicherheitsfaktoreinsetzen!

Berechnungsbeispiel

Das Kreuzrollenlager SX 01 1860 soll auf seine statische Tragfähigkeit überprüft werden.

Gegeben

 $F_{0a} = 70$ $F_{0r} = 17,5$ statische Lagerbelastung (axial) kΝ statische Lagerbelastung (radial) Statische Kippmomentbelastung $M_{0k} = 22,5$ Wälzkörper-Mittenkreisdurchmesser $D_{M} = 340$ mm $f_A = 1,25$ (Tabelle 1) Anwendungsfaktor Sicherheitsfaktor

Gesucht

Statische Tragfähigkeit des Lagers.

Lösung

$$\epsilon = \frac{2000 \cdot M_{0k}}{F_{0a} \cdot D_{M}}$$

$$\epsilon = \frac{2000 \cdot 22, 5}{70 \cdot 340} = 1,89$$

$$\frac{F_{0r}}{F_{0a}} = \frac{17, 5}{70} = 0,25 \text{ (Bild 1, Seite 11)}$$

$$f_{0r} = 1,2 \text{ (Bild 1, Seite 11)}$$

$$F_{0q}$$
 $F_{0a} \cdot f_A \cdot f_S \cdot f_C$
 $F_{0a} = 70 \cdot 1,25 \cdot 1 \cdot 1,2 = 105 \text{ kN}$

$$M_{0q} M_{0k} \cdot f_A \cdot f_S \cdot f_C$$

 $M_{0q} = 22.5 \cdot 1.25 \cdot 1 \cdot 1.2 = 33.75 \text{ kNm}$

Lastpunkt im statischen Grenzlastdiagramm bestimmen statische Tragfähigkeit überprüfen

Mit den Werten von F_{0q} und M_{0q} wird der Lastpunkt in den statischen Grenzlastdiagrammen Laufbahn und Befestigungsschrauben bestimmt (siehe Bild 2 und Bild 3).

Der Lastpunkt liegt unterhalb der Laufbahn- und Schraubenkurve. Das Lager ist ausreichend dimensioniert und damit für die Anwendung geeignet.

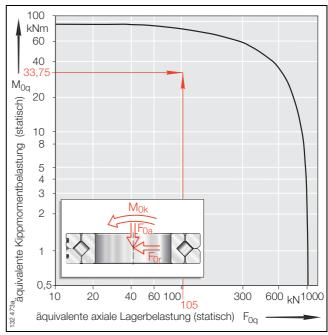


Bild 2 · Statisches Grenzlastdiagramm Laufbahn - aufliegende Belastung

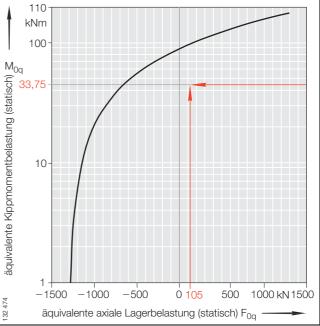


Bild 3 · Statisches Grenzlastdiagramm Befestigungsschrauben - aufliegende Belastung

Tragfähigkeit und Lebensdauer

Dynamische Tragfähigkeit

Dynamisch beanspruchte Kreuzrollenlager – d.h. überwiegend rotierend betriebene Lager – werden nach ihrer dynamischen Tragfähigkeit dimensioniert.

Definition der dynamischen Tragfähigkeit

Die dynamische Tragfähigkeit ist bestimmt durch das Ermüdungsverhalten des Werkstoffs. Die Lebensdauer als Ermüdungszeitraum hängt ab von der Belastung und der Betriebsdrehzahl des Lagers und der statistischen Zufälligkeit des ersten Schadeneintritts (Definition siehe auch *INA-Katalog 307*).

Das Maß für die dynamische Tragfähigkeit sind:

- die dynamischen Tragzahlen C (siehe Maßtabellen)
- die nominelle (rechnerische) Lebensdauer L oder Lh.

Die Größe eines dynamisch beanspruchten Kreuzrollenlagers für eine bestimmte Anwendung kann damit näherungsweise durch die dynamischen Tragzahlen und die nominelle Lebensdauer überprüft werden.

Definition der nominellen Lebensdauer

Grundlage für die Berechnung ist die Wahrscheinlichkeitstheorie, nach der ein definierter Prozentsatz einer genügend großen Menge gleicher Lager eine bestimmte Anzahl an Umdrehungen erreicht oder überschreitet, bevor die ersten Anzeichen einer Werkstoffermüdung auftreten. Der Berechnung liegt eine Erlebenswahrscheinlichkeit von 90% zugrunde.

Die nominelle Lebensdauer ist nur ein grober Richt- und Vergleichswert!

Die Ermittlung einer modifizierten Lebensdauer nach DIN ISO 281 ist dann zu empfehlen, wenn die Sollviskosität des Schmiermittels für den jeweiligen Betriebslastfall nicht erreicht wird (siehe dazu INA-Katalog 307)!

Nominelle Lebensdauer ermitteln

Die Lebensdauer-Gleichung L und Lh sind nur gültig:

- bei einer Lastanordnung nach Bild 1
- wenn alle in dieser Druckschrift genannten Anforderungen erfüllt sind, bezüglich
 - Befestigung (die Lagerringe müssen starr bzw. fest mit der Anschlusskonstruktion verbunden sein)
 - Einbau, Schmierung und Abdichtung
- wenn Belastung und Drehzahl während des Betriebs als konstant angesehen werden können
 - sind Belastung und Drehzahl nicht konstant, können äquivalente Betriebswerte bestimmt werden, die die gleichen Ermüdungen verursachen, wie die tatsächlichen Beanspruchungen (siehe Äquivalente Betriebswerte, INA-Katalog 307)
- wenn das Belastungsverhältnis F_r/F_a ≤8 ist.

 $\bigwedge_{\Gamma} \frac{1}{\Gamma}$

Bei komplexeren Lastanordnungen, einem Verhältnis $_{\rm Fr}/{\rm F_a} > 8$ oder Abweichungen von den genannten Bedingungen bei INA rückfragen!

Nominelle Lebensdauer für kombiniert belastete Lager ermitteln

Für kombiniert belastete Lager – Lager mit Axial-, Radialund Kippmomentbelastung – wird die Lebensdauer L und L_h folgendermaßen berechnet:

- \blacksquare Kennwert der Lastexzentrizität ϵ nach Gleichung berechnen.
- Verhältnis der radialen dynamischen Lagerbelastung F_r zur axialen dynamischen Lagerbelastung F_a (F_r/F_a) bestimmen.
- Aus den Werten von ε und dem Verhältnis F_r/F_a in Bild 1 dynamischen Lastfaktor k_F ermitteln.
- Dynamisch äquivalente axiale Lagerbelastung P_{axial} = F_a×k_F nach Gleichung berechnen.
- Dynamisch äquivalente axiale Lagerbelastung P_{axial} und die axiale dynamische Tragzahl C_a in die Lebensdauergleichungen L bzw. L_h einsetzen und die Lebensdauer berechnen. Bei Schwenkbetrieb in die Lebensdauergleichung L_h ermittelte Betriebsdrehzahl n nach Gleichung einsetzen.

Nominelle Lebensdauer für rein radial belastete Lager ermitteln

Für rein radial belastete Drehverbindungen werden die Lebensdauergleichungen L und L_h folgende Werte eingesetzt:

- anstelle der dynamisch äquivalenten axialen Lagerbelastung P_{axial} die dynamisch äquivalente radiale Lagerbelastung P_{radial} (d.h. F_r)
 - $-P_{radial} = F_r$
- die radiale dynamische Tragzahl Cr.

$$\epsilon = \frac{2000 \cdot M_k}{F_a \cdot D_M}$$

 $P_{axial} = k_F \cdot F_a$

$$L = \left(\frac{C}{P_{axial}}\right)^p$$

$$L_h = \frac{16666}{n} \cdot \left(\frac{C}{P_{axial}}\right)^p$$

$$n = n_{osz} \cdot \frac{\gamma}{90}$$

Kennwert der Lastexzentrizität

kNm

dynamische Kippmomentbelastung

 ${\sf F}_{\sf a}$ kN dynamische Lagerbelastung (axial)

 ${\sf D_M}$ mm Wälzkörper-Mittenkreisdurchmesser (*Maßtabelle*)

 $\begin{array}{ll} P_{axial} & kN \\ dynamisch ~\ddot{a}quivalente~axiale~Lagerbelastung. \\ F\ddot{u}r~rein~radial~belastete~Drehverbindungen~P_{radial}~einsetzen \end{array}$

dynamischer Lastfaktor (siehe Bild 1)

10⁶ Umdr.

nominelle Lebensdauer in Millionen Umdrehungen

kΝ

axiale oder radiale dynamische Tragzahl nach Maßtabelle. Für rein radial belastete Drehverbindungen C_r einsetzen

Lebensdauerexponent für Kreuzrollenlager: p = 10/3

nominelle Lebensdauer in Betriebsstunden

min^{−1}

Betriebsdrehzahl des Kreuzrollenlagers

n_{osz} min⁻ 1 Frequenz der Hin- und Herbewegung

halber Schwenkwinkel

Pradial

dynamisch äquivalente radiale Lagerbelastung

 ${
m F_r}$ kN dynamische Lagerbelastung (radial).

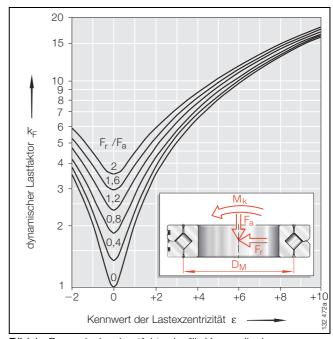


Bild 1 · Dynamischer Lastfaktor k_F für Kreuzrollenlager

Tragfähigkeit und Lebensdauer

Dynamische Tragfähigkeit

Einflüsse auf die Gebrauchsdauer der Kreuzrollenlager

Die Gebrauchsdauer ist die tatsächlich erreichte Lebensdauer eines Kreuzrollenlagers. Sie kann durch Verschleiß und/oder Ermüdung deutlich von der errechneten, nominellen Lebensdauer abweichen.

Mögliche Ursachen sind:

- oszillierende Lagerbewegungen mit sehr kleinen Schwenkwinkeln – Riffelbildung
- Vibrationen, wenn das Lager stillsteht
- falsche Ausführung oder Verformung der Anschlusskonstruktion
- zu hohe Betriebstemperaturen
- falsche Wartung oder Schmierung
- Verschmutzung
- falsche Montage
- unzureichende Vorspannung der Befestigungsschrauben.

Durch die Vielfalt der möglichen Einbau- und Betriebsverhältnisse kann die Gebrauchsdauer nicht exakt vorausberechnet werden. Sie lässt sich am sichersten durch Vergleiche mit ähnlichen Einbaufällen abschätzen.

Berechnungsbeispiel

Gegeben

Kreuzrollenlager SX 01 1820 Wälzkörper-Mittenkreisdurchmesser $D_M = 112 \text{ mm}$ nach Maßtabelle, Seite 48 dynamische Tragzahl (axial) nach Maßtabelle, Seite 49 $C_a = 28 \text{ kN}$ Lebensdauerexponent p = 10/3für Kreuzrollenlager dynamische Lagerbelastung (axial) 20 kN dynamische Lagerbelastung (radial) 4 kN dynamische Kippmomentbelastung

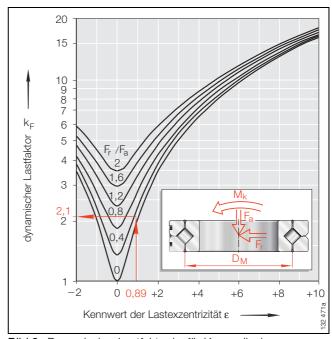
Gesucht

Nominelle Lebensdauer L in Millionen Umdrehungen.

Lösung

$$\epsilon = \frac{2000 \cdot M_{K}}{F_{a} \cdot D_{M}}$$

$$\epsilon = \frac{2000 \cdot 1}{20 \cdot 112} = 0,89$$


$$\frac{F_{r}}{F_{a}} = \frac{4}{20} = 0,2$$

$$P_{axial} = 2,1 \cdot 20 \text{ kN} = 42 \text{ kN}$$

$$L = \left(\frac{C_a}{P_{axial}}\right)^p$$

$$L = \left(\frac{28}{42}\right)^{\frac{10}{3}} = 0.26 \cdot 10^6 \text{ Umdrehungen}$$

 $\textbf{Bild 2} \cdot \textbf{Dynamischer Lastfaktor} \ k_F \ \text{für Kreuzrollenlager}$

Befestigungselemente

Statische und dynamische Tragfähigkeit der Befestigungsschrauben INA-Präzisions-Nutmuttern

Zusätzlich zur Laufbahn muss auch die Tragfähigkeit der Befestigungsschrauben überprüft werden. Grundlage dafür sind die Angaben im Kapitel Statische Tragfähigkeit.

Bedingungen zur Überprüfung der Tragfähigkeit

Die Tragfähigkeit der Befestigungsschrauben kann überprüft werden, wenn folgende Bedingungen erfüllt sind:

- die Kriterien nach Statische Tragfähigkeit sind erfüllt
- die Schrauben werden mit einem Drehmomentschlüssel vorschriftsmäßig angezogen
 - Schraubenanziehfaktor α_A = 1,6, Anziehdrehmomente nach Tabelle 1, Seite 43
- die zulässige Flächenpressung ist nicht überschritten
- die empfohlene Schraubengröße, -anzahl und -qualität wird verwendet.

Maß für die Tragfähigkeit

Die Tragfähigkeit der Schrauben wird beschrieben durch:

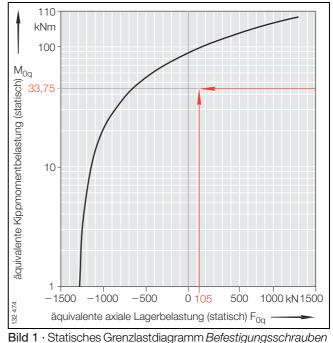
- die Kurven in den statischen Grenzlastdiagrammen Befestigungsschrauben (Beispiel siehe Bild 1)
- die maximal zulässige Radialbelastung F_{r zul} (Reibschluss) in den Maßtabellen.

Statische Grenzlastdiagramme

Die Schraubenkurven sind in den statischen Grenzlastdiagrammen *Befestigungsschrauben* angegeben. Den Kurven liegen Schrauben der Festigkeitsklasse 10.9 zugrunde, angezogen auf 90% der Streckgrenze einschließlich Torsionsanteil.

Werden Schrauben der Festigkeitsklasse 8.8 oder 12.9 eingesetzt, müssen die statisch äquivalenten Belastungen F_{0q} und M_{0q} (siehe *Statische Tragfähigkeit*, Seite 10, mit folgenden Faktoren umgerechnet werden:

- Festigkeitsklasse 8.8 ($F_{0q} \times 1,65$, $M_{0q} \times 1,65$)
- Festigkeitsklasse 12.9 ($F_{0q} \times 0.8$, $M_{0q} \times 0.8$).


Statische Tragfähigkeit überprüfen

Die Streckgrenze der Schraube begrenzt ihre statische Tragfähigkeit.

Statische Tragfähigkeit für Anwendungen ohne Radiallast

Äquivalente statische Lagerbelastungen F_{0q} und M_{0q} bestimmen (siehe dazu: *Statisch äquivalente Lagerbelastung bei fehlender Radiallast ermitteln*, Seite 10).

Mit den Werten F_{0q} und M_{0q} den Lastpunkt im statischen Grenzlastdiagramm *Befestigungsschrauben* bestimmen. Der Lastpunkt muss unterhalb der entsprechenden Schraubenkurve liegen (siehe Beispiel, Bild 1)!

Beispiel für Kreuzrollenlager SX 01 1860

Statische Tragfähigkeit für Anwendungen mit Radiallast

Äquivalente statische Lagerbelastungen F_{0q} und M_{0q} bestimmen (siehe dazu: Statisch äquivalente Lagerbelastung bei vorhandener Radiallast ermitteln, Seite 10).

Mit den Werten F_{0q} und M_{0q} den Lastpunkt im statischen Grenzlastdiagramm Befestigungsschrauben bestimmen. Der Lastpunkt muss unterhalb der entsprechenden Schraubenkurve liegen!

Einfluss der Radialbelastung auf die statische Tragfähigkeit der Befestigungsschrauben

Treten bei unzentrierten Lagerringen radiale Belastungen auf, dann muss die Verschraubung auch verhindern, dass sich die Lagerringe auf der Anschlusskonstruktion verschieben.

Um das zu überprüfen:

- radiale Belastung des Lagers mit einem Anwendungsfaktor f_A nach Tabelle 1, Seite 12, multiplizieren
- ermittelten Werte mit der maximal zulässigen Radialbelastung $F_{r zul}$ in den Maßtabellen vergleichen.

Die maximale radiale Belastung F_{r zul} der Befestigungsschrauben hängt von ihrem Reibschluss ab, der für jedes Lager in den Maßtabellen angegeben ist und nicht von der radialen Tragfähigkeit des Lagers!

Ist die radiale Belastung des Lagers höher als der Reibschluss der Befestigungsschrauben nach Maßtabelle, oder liegen sehr hohe Radialbelastungen vor (F_r/F_a >4), bitte bei INA rückfragen!

Dynamische Tragfähigkeit überprüfen

Die dynamische Tragfähigkeit entspricht der Dauerfestigkeit der Schraube.

Dynamische Tragfähigkeit

- Mit den vorhandenen dynamischen Belastungen die äquivalenten Belastungen F_{0a} und M_{0a} nach Kapitel
 - anstelle des Anwendungsfaktors fA Betriebsbelastung immer um folgende Faktoren erhöhen: Festigkeitsklasse 8.8 (Faktor 1,8) Festigkeitsklasse 10.9 (Faktor 1,6) Festigkeitsklasse 12.9 (Faktor 1,5)
- Tragfähigkeit im statischen Grenzlastdiagramm Befestigungsschrauben überprüfen. Der Lastpunkt muss unterhalb der entsprechenden Schraubenkurve liegen (Beispiel, Bild 1).

INA-Präzisions-Nutmuttern

Zum Einstellen und Fixieren des Lagerspiels bzw. zum Vorspannen haben sich INA-Präzisions-Nutmuttern der Baureihen AM, ZM und ZMA bewährt, siehe Seite 46.

Anziehdrehmomente der Nutmuttern nach technischem Angebotsschreiben oder Maßtabellen, Seiten 58 und 59, unbedingt einhalten. Das notwendige Anziehdrehmoment sollte auch in der Montagezeichnung angegeben sein!

Präzisions-Nutmuttern AM

Die Klemmkräfte werden durch die Segmente der Nutmutter aufgebracht, siehe Seite 46.

Nutmutter niemals über ein Segment anziehen! Zum Anziehen möglichst INA-Steckschlüssel AMS verwenden, der die gleichmäßige Belastung aller Segmente sicherstellt oder Mutter mit einem Hakenschlüssel nach DIN 1810 B anziehen!

Mutter mit den Gewindestiften in den Segmenten sichern! Damit sich die Segmente axial nicht verformen, Gewindestifte nur über Kreuz auf das vorgeschriebene Anziehdrehmoment anziehen!

Beachten, dass die Mutter vollständig auf dem Wellengewinde aufgeschraubt ist!

Präzisions-Nutmuttern ZM, ZMA

Nutmuttern dieser Baureihen werden durch zwei Blockierstifte gegen Verdrehen gesichert, siehe Seite 46.

Zum Anziehen der Nutmutter Hakenschlüssel nach DIN 1810 B verwenden!

Schmierung

Grundlagen

Richtige Schmierung und regelmäßige Wartung sind wichtige Voraussetzungen für die lange Gebrauchsdauer der Kreuzrollenlager.

Der Schmierstoff soll:

- an den Kontaktflächen einen ausreichend tragfähigen Schmierfilm ausbilden
- das Lager nach außen hin abdichten (Fettschmierung) und damit das Eindringen von Verunreinigungen fester und flüssiger Art verhindern
- das Laufgeräusch dämpfen
- das Lager vor Korrosion schützen
- bei hochbeanspruchten Wälzlagern die Wärmeabfuhr übernehmen (Ölschmierung).

Schmierungsarten

Kreuzrollenlager können grundsätzlich mit Fett oder Öl geschmiert werden.

Entscheidend für Art der Schmierung und die erforderliche Schmierstoffmenge sind:

- die Bauform und Größe des Lagers
- die konstruktive Ausführung der Lagerumgebung
- die Schmierstoffführungen
- die Betriebsbedingungen.

Fettschmierung

Kriterien für die Wahl des Schmierfettes

Gebrauchstemperaturbereich (Bild 1)

Er muss dem Bereich der möglichen Temperaturen im Wälzlager entsprechen.

Die möglichen Betriebstemperaturen sollten den oberen und den unteren Grenzwert nicht erreichen:

- die höchste Betriebstemperatur soll 20 ° C unter dem oberen Grenzwert liegen
- die niedrigste 20 °C über dem unteren Grenzwert liegen. Fette geben bei sehr tiefen Temperaturen wenig Grundöl ab. Als Folge kann hier Mangelschmierung auftreten.

Art des Schmierfetts (Bild 2)

Die Eigenschaften eines Fetts hängen ab:

- vom Grundöl
- der Viskosität des Grundöls
 - wichtig für den Drehzahlbereich
- dem Verdicker
 - Scherfestigkeit wichtig für den Drehzahlbereich
- der Additivierung.

Konsistenz der Schmierfette (Bild 3)

Schmierfette sind in Konsistenzklassen - NLGI-Klassen eingeteilt (DIN 51818). Für Wälzlager werden bevorzugt die Klassen 1, 2, 3 eingesetzt.

Die verwendeten Fette sollen:

- bei hohen Temperaturen nicht zu weich (NLGI 1)
- bei tiefen Temperaturen nicht zu steif (NLGI 3) werden.

Schmierfett nach dem Drehzahlkennwert n \cdot d_M für Fett wählen:

- für schnelllaufende Wälzlager oder bei kleinem Anlaufmoment Fette mit hohem Drehzahlkennwert nehmen
- für langsamlaufende Lager Fette mit niedrigem Drehzahlkennwert verwenden.

Polyharnstoff-Fette können bei Schwerbeanspruchung ihre Konsistenz ändern.

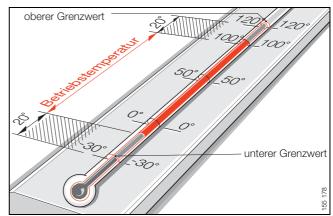


Bild 1 · Gebrauchstemperaturbereich

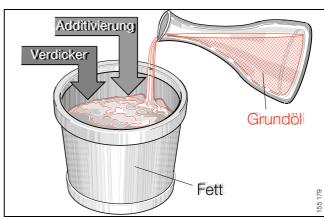


Bild 2 · Art des Schmierfetts

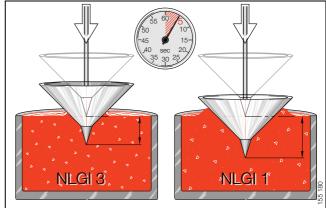


Bild 3 · Konsistenz von Schmierfetten

Schmierung

Fettschmierung

Verhalten gegenüber Wasser (Bild 4)

Wasser im Schmierfett setzt die Gebrauchsdauer der Lager stark herab:

- das Verhalten von Schmierfetten gegenüber Wasser wird nach DIN 51807 bewertet (siehe Tabelle 1)
- die Korrosionsschutzeigenschaften können nach DIN 51802 geprüft werden - Angaben in den Datenblättern der Fetthersteller.

Druckbelastbarkeit

- Für einen tragfähigen Schmierfilm muss die Viskosität bei Betriebstemperatur ausreichend hoch sein
- bei hohen Belastungen Schmierfette mit EP-Eigenschaften - "extreme pressure" - und hoher Grundölviskosität verwenden (KP-Fett nach DIN 51502)

Das Lasttragevermögen bekannter Fette kann sich ändern, wenn bleihaltige EP-Zusätze entfallen.

Deshalb:

- Fettwahl überprüfen
- beim Fetthersteller anfragen!

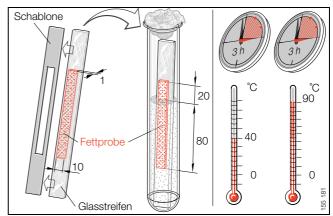


Bild 4 · Verhalten gegenüber Wasser nach DIN 51807

Tabelle 1 · Wälzlagerfett für die Erstbefettung

INA- Kurzzeichen	Bezeichnung nach DIN 51825	Art des Schmierfetts	Temperaturbereich °C	NLGI-Klasse (Konsistenz)	kennwert	kinematische Viskosität bei 40 ° C (Grundöl) mm² s-1	Verhalten gegenüber Wasser nach DIN 51807
SM03	KP2N-25	Lithiumkomplexseifenfett (Mineralölbasis)	–30 ¹⁾ bis +150	2	500 000	160	1–90

¹⁾ Ermittelt nach IP 186/85.

Mischbarkeit

Voraussetzungen:

- gleiche Grundölbasis
- übereinstimmender Verdickertyp
- ähnliche Grundölviskositäten
 - nicht weiter auseinander als eine ISO-VG-Klasse
- gleiche Konsistenz NLGI-Klasse.

Sollen Fette miteinander gemischt werden, unbedingt beim Fetthersteller anfragen!

Lagerfähigkeit (Bild 5)

Schmierstoffe altern durch Umwelteinflüsse. Angaben der Schmierstoffhersteller einhalten!

INA setzt Schmierfette auf Mineralölbasis ein. Die Fette sind erfahrungsgemäß bis zu 3 Jahren lagerfähig.

Bedingungen:

- umschlossener Raum Lagerraum
- Temperaturen zwischen 0 °C und +40 °C
- relative Luftfeuchtigkeit nicht über 65%
- keine Einwirkung chemischer Agenzien Dämpfe, Gase, Flüssigkeiten
- Wälzlager abgedichtet.

Nach längerer Lagerung kann das Anlauf-Reibungsmoment befetteter Lager vorübergehend höher sein. Außerdem kann die Schmierfähigkeit des Fetts nachgelassen haben.

Schmierfette – auch von gleichem Hersteller – können in ihren Eigenschaften streuen! INA haftet deshalb nicht für die Schmierstoffe und ihre Eigenschaften im Betrieb!

Erstbefettung

INA-Kreuzrollenlager werden befettet geliefert (verwendetes Schmierfett siehe Tabelle 1, Seite 22). Das Schmierfett ist ein hochwertiges Lithiumkomplexseifenfett auf Mineralölbasis nach DIN 51825 KP2N-25.

Das freie Volumen im Laufbahnsystem des Lagers ist mit Fett gefüllt. Geeignet ist das Schmierfett für den Temperaturbereich von −30 °C bis +150 °C.

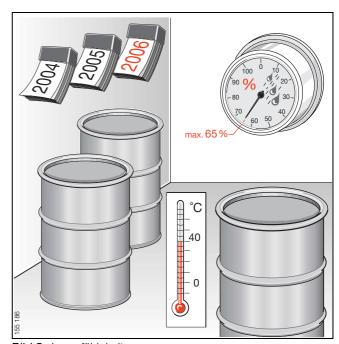


Bild 5 · Lagerfähigkeit

Schmierung

Fettschmierung

Schmierfristen

Die Schmierfristen hängen im wesentlichen ab von:

- den Betriebsbedingungen
- den Umgebungseinflüssen wie z.B. Schmutz, Wasser u.ä.
- der Bauform der Kreuzrollenlager.

Die Schmierfristen lassen sich exakt nur durch Versuche unter Anwendungsbedingungen ermitteln:

- ausreichend langen Bearbeitungszeitraum wählen
- Fettzustand in regelmäßigen Zeitabständen prüfen!

Fettgebrauchsdauer

Kann nicht nachgeschmiert werden, ist die Fettgebrauchsdauer entscheidend.

Der Richtwert der Fettgebrauchsdauer liegt erfahrungsgemäß bei der Mehrzahl der Anwendungen um den Faktor 2 höher als der Richtwert der Schmierfrist.

Bei Betriebstemperaturen über +70 °C verkürzt sich die Schmierfrist und damit die Fettgebrauchsdauer.

Damit die Betriebssicherheit gewährleistet ist, soll die Schmierfettgebrauchsdauer 3 Jahre nicht überschreiten.

Nachschmiervorgang

Durch den Schmiervorgang werden auch in die Kreuzrollenlager eingedrungene Fremdstoffe wie Schmutz, Staub, Spritzund Kondenswasser herausgedrückt.

Zum Nachschmieren möglichst den gleichen Schmierstoff verwenden wie bei der Inbetriebnahme.

Grundsätzlich bei betriebswarmen Lagern schmieren.

- Schmiernippel säubern.
- Nacheinander so viel Schmierfett in die Schmiernippel einpressen, bis sich rund um die beiden Dichtungen ein Kragen aus frischem Schmierfett bildet (einen Lagerring dabei langsam drehen)
 - für ungehinderten Austritt des Altfettes sorgen.

Vor der Inbetriebnahme sicherstellen, dass alle Schmierstoffleitungen zum Lager mit Schmierstoff gefüllt sind.

Ölschmierung

Zur Ölschmierung empfiehlt INA Schmieröle CL/CLP, DIN 51 517 oder Schmieröle HL/HLP, DIN 51 524 (ISO-VG 10 bis 100).

Die Schmieröle sind bei Betriebstemperaturen von –30 °C bis +100 °C einsetzbar.

Grenzdrehzahlen für $n_{G\ Fett}$ und $n_{G\ \ddot{O}l}$ nach Maßtabellen beachten!

Wahl des Schmieröls

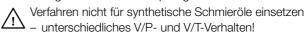
In den Kontaktzonen zwischen Wälzkörper und Laufbahn ist ein tragfähiger Schmierfilm erforderlich.

Abhängig von der Betriebsdrehzahl muss das Schmieröl bei Betriebstemperatur:

 \blacksquare mindestens die Sollviskosität v_1 haben (Bild 6).

Sollviskosität für Mineralöle

Der Richtwert für ν_1 hängt ab:


- vom mittleren Lagerdurchmesser d_M
- von der Drehzahl n.

Der Richtwert berücksichtigt:

- Erkenntnisse der EHD-Theorie zur Schmierfilmbildung
- praktische Erfahrungen.

Sollviskosität v₁ bestimmen (Bild 6)

- = ν_1 einer Nennviskosität der ISO-VG zwischen 10 und 1500 zuordnen
 - Mittelpunktviskosität nach DIN 51 519
- Zwischenwerte auf die nächstliegende ISO-VG runden
 - bedingt durch die Stufensprünge.

Einfluss der Temperatur auf die Viskosität

Mit steigender Temperatur fällt die Viskosität des Öls.

Bei der Wahl der Viskosität die untere Betriebstemperatur berücksichtigen:

 die steigende Viskosität verringert das Fließvermögen des Schmierstoffs; die Leistungsverluste erhöhen sich!

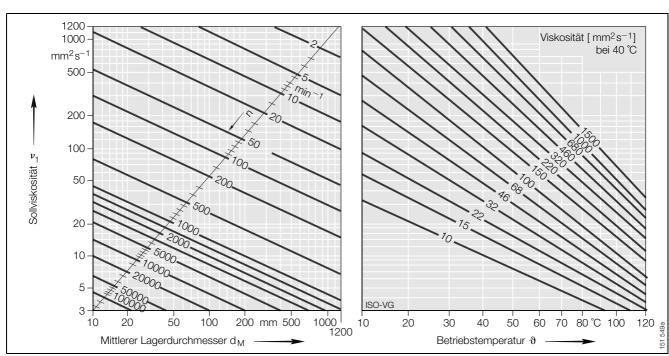


Bild 6 · Sollviskosität ν₁ bestimmen

Abdichtung der Lagerung

INA-Dichtungsprofile

INA-Kreuzrollenlager SX werden ohne Abdichtung geliefert. Je nach Anforderung und Art der Verschmutzung muss deshalb in der Anschlusskonstruktion eine Abdichtung der Lagerstelle vorgesehen werden.

INA-Kreuzrollenlager der Baureihen XSU und XV sind abgedichtet. Bei starker Verschmutzung, Spritz- oder Schwallwasser etc. kann trotzdem eine zusätzliche Abdichtung der Lagerung in der Anschlusskonstruktion notwendig sein.

INA-Dichtungsprofile

Zum Abdichten der Lagerung in der Anschlusskonstruktion liefert INA verschiedene Dichtungsprofile als Meterware. Diese Profile erfüllen die unterschiedlichsten Anforderungen (siehe Tabelle 1).

Die Dichtungsprofile sind nicht für Anwendungen geeignet, die einen leckagefreien Betrieb erfordern – auch nicht bei Fettschmierung! Sind keine Leckageverluste zulässig, können z.B. Wellendichtringe eingesetzt werden!

Werkstoff der Dichtungsprofile

Standardwerkstoff für die Profile ist das synthetische Elastomer NBR 70. Dieser Werksoff zeichnet sich aus durch seine:

- gute Öl- und Fettbeständigkeit
- gute Abriebfestigkeit.

Betriebstemperatur

INA-Dichtungsprofile sind bei Temperaturen von $-40~^{\circ}\mathrm{C}$ bis $+80~^{\circ}\mathrm{C}$ einsetzbar.

Bei niedrigeren oder höheren Betriebstemperaturen, extremen Umgebungseinflüssen (z.B. Ozon) oder hohen Drehzahlen, bitte bei INA rückfragen.

Dichtungsprofile einbauen

Umfeld der Lagerabdichtung so ausführen, dass die Dichtungsprofile während des Betriebs nicht beschädigt werden! Profile beim Einbau der Drehverbindung nicht beschädigen!

Profile nach folgenden Arbeitsschritten einbauen:

- Einbauraum reinigen.
- Dichtungsprofil mit ca. 5% Überlänge vorsichtig in den Einbauraum drücken
 - z.B. mit stumpfen Holzkeil (Bild 2).
- Profil auf exakte L\u00e4nge schneiden (Bild 2) beachten, dass die Sto\u00dfstellen plan sind.
- Fettfreie Stoßstellen mit Cyanacrylat-Kleber ohne Versatz verkleben (Bild 3) z.B. mit Loctite 406.
- Profil fertig montieren (Bild 3).

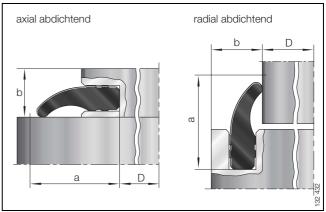
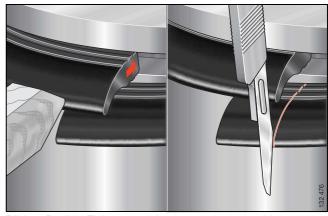



Bild 1 · Bemaßung des Einbauraums und der Durchmesser

 $\operatorname{\mathsf{Bild}} 2 \cdot \operatorname{\mathsf{Profil}}$ in Einbauraum drücken und zuschneiden

Bild 3 · Stoßstellen verkleben und Profil fertigmontieren

Tabelle 1 · Dichtungsprofile – Auswahlschema und Eigenschaften

Profil Querschnitt		Kurzzeichen	Durchmesserbe D	ereich ¹⁾	Einbau	erlicher uraum werte) ¹⁾	Eigenschaften	
axial abdichtend	radial abdichtend		axial	radial	а	b		
b	b	A/R 0101 A/R 0106 A/R 0207 A/R 0509	100 bis 500 100 bis 500 300 bis 1000 >400	100 bis 500 200 bis 700 300 bis 1000 >400	8 9,5 11 17	5 5 7,5 10	 für normale Anforderungen an die Abdichtung auch bei starker Verschmutzung geeignet 	
b	b	A/R 0218 A/R 0419	300 bis 1000 >400	300 bis 1000 >400	12 16	7,5 10	- niedriges Reibungsmoment	
b	a	A/R 1025 A/R 1126 A/R 1227	>200 >400 >400	200 bis 1000 400 bis 1000 >400	8 12 16	5,5 9 11	nur geringer Bauraum notwendig geschützt durch Anbringen im Lagerspalt	
radial abdichtend		-	- 		*	•		
R 2001	R 2009	R 2001 R 2009	-	>300	13	9,5	 höherer Anpressdruck durch Spannfeder besonders geeignet zum Abdichten von Fluiden nur für niedrige Drehzahlen bzw. Schwenkbetrieb 	
axial und radial abdic	htend							
b	a b	AR 0501	>400	>400	19	14,5	längere Wartungsintervalle zweiseitig wirkend (axial und radial)	

Zu den einzelnen Dichtungsprofilen können Einbauzeichnungen angefordert werden.

Bemaßung des Einbauraums und der Durchmesser siehe Bild 1.

Gestaltung der Lagerung

INA-Kreuzrollenlager sind hoch belastbar. Durch die X-Anordnung der Wälzkörper übertragen diese Lager mit einer Lagerstelle (Bild 1):

- axiale Belastungen aus beiden Richtungen
- radiale Belastungen
- Kippmomentbelastungen
- beliebige Lastkombinationen.

Damit diese Vorteile umfassend genutzt werden können, muss die Anschlusskonstruktion entsprechend steif gestaltet sein.

Lagerringe immer fest und gleichmäßig über den Umfang und die Breite der Ringe unterstützen (Bild 2)!

Anschlusskonstruktion nur nach den Angaben in diesem Kapitel auslegen! Abweichungen von den Vorgaben, der Werkstofffestigkeit und den Anschlussbauteilen mindern die Tragfähigkeit und Gebrauchsdauer der Kreuzrollenlager erheblich!

Abdichtung der Lagerstelle

Ist für die Lagerung eine Abdichtung in der Anschlusskonstruktion vorgesehen, Gestaltungsrichtlinien für die Dichtungsprofile im Kapitel *Abdichtung der Lagerung*, Seite 26, beachten.

Umfeld der Lagerabdichtung so ausführen, dass die Dichtungsprofile während des Betriebs nicht beschädigt werden!

Befestigungsschrauben

Zur Befestigung der Lagerringe oder Klemmringe sind Schrauben der Festigkeitsklasse 10.9 nach Tabelle 2, Seite 31, geeignet – Dimensionierung und Anziehdrehmoment hängen von der Lagergröße ab.

Abweichungen von der empfohlenen Abmessung, der Festigkeitsklasse und der Anzahl der Schrauben reduzieren die Tragfähigkeit und Gebrauchsdauer der Lager erheblich!

Bei Schrauben der Festigkeitsklasse 12.9 Mindestfestigkeit der Klemmringe (siehe Seite 30) beachten bzw. vergütete Unterlegscheiben verwenden!

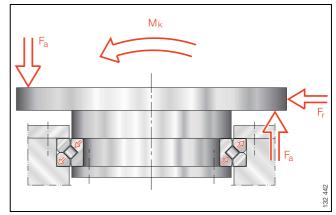


Bild 1 · Lastübertragung – Axial-, Radial-, Kippmomentbelastung

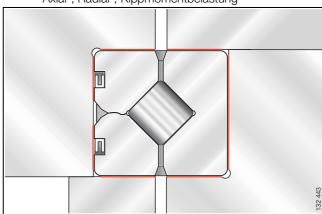


Bild 2 · Gleichmäßige Unterstützung der Lagerringe durch die Umgebungskonstruktion – Beispiel Kreuzrollenlager SX

Kreuzrollenlager SX

Je nach Anwendung muss die Lagerung unterschiedliche Anforderungen an die Laufgenauigkeit erfüllen.

Einbautoleranzen für Normalanwendungen

Für Normalanwendungen genügen die Toleranzen K7 für das Gehäuse und h7 für die Welle (siehe Tabelle 1).

Einbautoleranzen für Präzisionsanwendungen

Bei Präzisionsanwendungen ist der Lagersitz im Gehäuse in der Toleranz K6, auf der Welle in h6 auszuführen (siehe Tabelle 1).

Tabelle 1 · Einbautoleranzen (Abmaße in μ m)

Welle	Welle					Gehäuse	Gehäusebohrung					
Nennm	Nennmaßbereich Nennabmaße I			Nennma	Nennmaßbereich Nennabmaße							
>	≦	h6		h7	h7		≦	K6	K6		K7	
		oben	unten	oben	unten			oben	unten	oben	unten	
65	80	0	-19	0	-30	-	-	-	-	-		
80	100	0	-22	0	-35	80	100	+4	-18	+10	-25	
100	120	0	-22	0	-35	100	120	+4	-18	+10	-25	
120	140	0	-25	0	-40	120	140	+4	-21	+12	-28	
140	160	0	-25	0	-40	140	160	+4	-21	+12	-28	
160	180	0	-25	0	-40	160	180	+4	-21	+12	-28	
180	200	0	-29	0	-46	180	200	+5	-24	+13	-33	
200	225	0	-29	0	-46	200	225	+5	-24	+13	-33	
225	250	0	-29	0	-46	225	250	+5	-24	+13	-33	
250	280	0	-29	0	-52	250	280	+5	-27	+16	-36	
280	315	0	-32	0	-52	280	315	+5	-27	+16	-36	
315	355	0	-36	0	- 57	315	355	+7	-29	+17	-40	
355	400	0	-36	0	<i>–</i> 57	355	400	+7	-29	+17	-40	
400	450	0	-40	0	-63	400	450	+8	-32	+18	-45	
450	500	0	-40	0	-63	450	500	+8	-32	+18	-45	
-	-	-	-		-	500	560	0	-44	0	-70	
_	_	-	-	-	-	560	630	0	-44	0	-70	

Gestaltung der Lagerung

Befestigung durch Klemmringe

Zum Befestigen der Kreuzrollenlager SX haben sich Klemmringe ① bewährt (Bild 3).

 \bigwedge_{n}^{N}

Mindestdicke s für Klemmringe und Anschlussflansche nach Tabelle 2 nicht unterschreiten!

Senkungen nach DIN 74, Form J, für Schrauben nach DIN 6 912 sind zulässig. Für tiefere Senkungen muss die Dicke des Klemmrings s um das Maß der zusätzlichen Senktiefe erhöht werden.

Anschlussmaße siehe Tabelle 2 und Bild 5.

Mindestfestigkeit der Klemmringe

Für Schrauben der Festigkeitsklasse 10.9 muss die Mindestfestigkeit unter den Schraubenköpfen bzw. Muttern 500 N/mm² betragen. Bei diesen Schrauben sind keine Unterlegscheiben notwendig.

Bei Befestigungsschrauben der Festigkeitsklasse 12.9 darf die Mindestfestigkeit von 850 N/mm² nicht unterschritten werden oder es müssen vergütete Unterlegscheiben unter den Schraubenköpfen bzw. Muttern verwendet werden.

Lagersitztiefe

Damit die Klemmringe das Lager sicher halten, muss die Lagersitztiefe t nach Tabelle 2 ausgeführt werden (Bild 4).

Die Tiefe des Lagersitzes beeinflusst das Lagerspiel und den Drehwiderstand!

Bei Lagern mit Vorspannung (Nachsetzzeichen VSP) ist der Drehwiderstand grundsätzlich höher!

Werden besondere Anforderungen an den Drehwiderstand gestellt, sollte die Tiefe t in Abstimmung mit der jeweiligen Höhe des Lagerringes gefertigt werden. Dabei hat sich bewährt, die Tiefe t mit den gleichen oder weiter eingeengten Abmaßen wie das Maß h in den *Maßtabellen* zu tolerieren. Zur Sicherheit sollten in diesem Fall jedoch eigene Versuche durchgeführt werden.

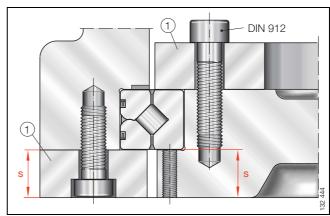


Bild 3 · Kreuzrollenlager SX durch Klemmringe fixiert

Bild 4 · Lagersitztiefe t

Tabelle 2 · Anschlussmaße für die Anschlusskonstruktion

Kurzzeichen	Anschlu	Anschlussmaße in mm												
	d _i h7 (h6)	D _a K7 (K6)	t	s min.	d _{Ra}	d _{Ri}	D _{Ri}	D _{Ra}	L _i max.	L _a min.	Abmessung	Anzahl		
SX 01 1814	70	90	10-0,005	8	78	42	82	118	60	100	M5	18		
SX 01 1818	90	115	13-0,005	10	100	61	104	144	80	125	M5	24		
SX 01 1820	100	125	13-0,005	10	110	71	114	154	90	135	M5	24		
SX 01 1824	120	150	16 ^{-0,005} _{-0,025}	12	132	84	138	186	108	162	M6	24		
SX 01 1828	140	175	18 ^{-0,005} _{-0,030}	14	154	94	160	221	124	191	M8	24		
SX 01 1832	160	200	20-0,02	15	177	111	183	249	144	216	M8	24		
SX 01 1836	180	225	22-0,02	17	199	121	205	284	160	245	M10	24		
SX 01 1840	200	250	24-0,02	18	221	139	229	311	180	270	M10	24		
SX 01 1848	240	300	28 ^{-0,02} _{-0,06}	21	266	166	274	374	216	324	M12	24		
SX 01 1860	300	380	38-0,04	29	335	201	345	479	268	412	M16	24		
SX 01 1868	340	420	38 ^{-0,04} _{-0,10}	29	375	241	385	519	308	452	M16	24		
SX 01 1880	400	500	46 ^{-0,04} _{-0,10}	35	445	275	455	625	360	540	M20	24		
SX 01 18/500	500	620	56 ^{-0,04} _{-0,10}	42	554	350	566	770	452	668	M24	24		

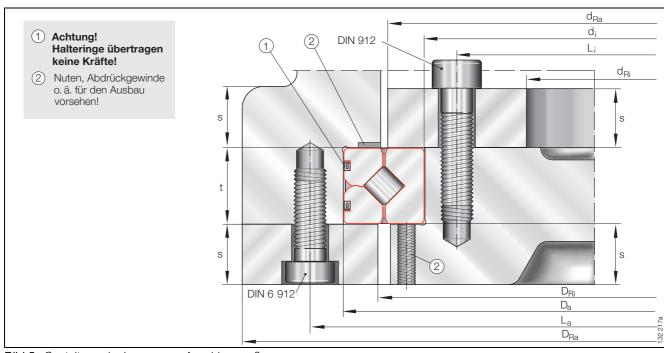
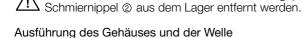


Bild 5 · Gestaltung der Lagerung – Anschlussmaße

Kreuzrollenlager XV


Befestigung durch Anflanschen und mit Nutmutter

Kreuzrollenlager XV werden mit dem Außenring direkt an das Gehäuse geschraubt und bei Bedarf zentriert (Bild 6).

Der Innenring wird radial durch eine entsprechende Passung gehalten, axial an einer Wellenschulter abgestützt und mit einer Nutmutter fixiert (Bild 6).

Sollen die Lager durch einen Schmierkanal ① in der Anschlusskonstruktion geschmiert werden (Bild 6), muss dieser bei der Gestaltung des Gehäuses berücksichtigt werden.

Vor dem Einbau muss dann mindestens ein eingepresster

Die Genauigkeit des Lagersitzes im Gehäuse, auf der Welle und an der Wellenschulter soll der Genauigkeit des Lagers und den Anforderungen der Anwendung entsprechen.

Die folgenden Angaben zur Maß-, Form- und Lagegenauigkeit sowie zur Rauheit sind Richtwerte für Standard-Anwendungen (bei Abweichungen bitte bei INA rückfragen):

- für die Sitz- und Auflageflächen im Gehäuse ist eine Genauigkeit nach Bild 7 erforderlich
- für die Sitz- und Anlageflächen auf der Welle ist eine Genauigkeit nach Bild 8 notwendig.

Tabelle 3 · Einbautoleranzen für Welle und Gehäuse

		Normal- anwendungen	Präzisions- anwendungen
Bohrung ØDae	Bild 7	K6	K5
Welle Ød _{ie}	Bild 8	h6	h5

INA-Präzisions-Nutmuttern

Für INA-Präzisions-Nutmuttern der Baureihen AM, ZM, ZMA (siehe *Maßtabellen*) sollte das Gewinde auf der Welle eine Genauigkeit gemäß Tabelle 4 haben.

Tabelle 4 · Genauigkeit für Wellengewinde

Planlauf	metrisches ISO-Gewinde der Nutmutter	Wellengewinde (Bild 8)	
Gewinde/ Planfläche		Normal- anwendungen	Präzisions- anwendungen
μm	"fein"	"mittel"	"fein"
5	5H	6g	4h
	DIN 13 T21-24	DIN 13 T21-24	•

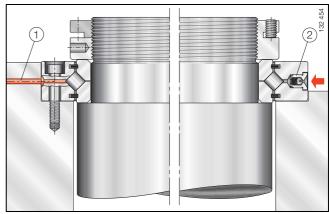


Bild 6 · Radiale und axiale Festlegung der Lagerringe – Schmierkanal in der Anschlusskonstruktion

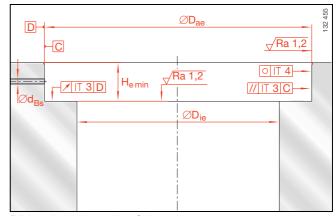


Bild 7 · Ausführung des Gehäuses

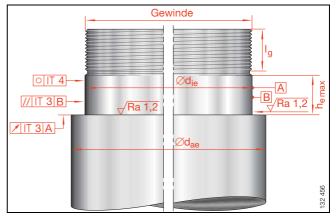


Bild 8 · Ausführung der Welle

Kreuzrollenlager XSU

Innen- und Außenring anflanschbar

Kreuzrollenlager XSU werden mit beiden Lagerringen direkt an die Anschlusskonstruktion geschraubt (Bild 9).

Die Anschlusskonstruktion muss eben und gleichmäßig steif, die Verbindung zwischen Lager und Anschlussbauteilen kraftschlüssig sein. Für die obere und untere Anschlusskonstruktion hat sich dazu jeweils ein zylindrischer Topf mit Flanschring bewährt (Bild 9).

Die Wanddicke t des Topfes soll ca. ein Drittel der Flanschdicke s betragen, die Topfhöhe H_T mindestens fünfmal die Flanschdicke s (Bild 9). Für eine gleichmäßigere Steifigkeit der Lagerung sind stärkere Wanddicken für Topf und Flanschring günstiger, als dünne Wanddicken mit Rippen.

Für möglichst geradlinigen Kraftfluss Topf genau über bzw. unter der Wälzkörperreihe anordnen!

Flanschringe so dimensionieren, dass sie die Lagerringe auf ihrer ganzen Breite unterstützen!

Zulässige Ebenheits- und Rechtwinkligkeitsabweichung der Anschlusskonstruktion

Die Anschraubflächen der Anschlusskonstruktion müssen folgende Anforderungen erfüllen:

- die Ebenheitsabweichung darf den zulässigen Wert δ_B nicht überschreiten (Bild 10)
- die Rechtwinkligkeitsabweichung darf den zulässigen Wert δ_W nicht überschreiten (Bild 10).

Zulässige Ebenheitsabweichung (Bild 10)

Die Ebenheitsabweichung δ_{B} wird nach folgender Gleichung berechnet und gilt für Umfangs- und Querrichtung:

■ in Umfangsrichtung darf sie in einem Sektor von 180° nur einmal erreicht werden. Der zulässige Verlauf ist ähnlich einer Sinuskurve, langsam steigend oder fallend.

$$\delta_{\rm B} = \frac{D_{\rm M} + 1000}{20000}$$

maximal zulässige Ebenheitsabweichung

mm

 ${\sf D_M}$ mm Wälzkörper-Mittenkreisdurchmesser.

Zulässige Rechtwinkligkeitsabweichung (Bild 10)

Die Rechtwinkligkeitsabweichung δ_W gilt für Querrichtung:

bezogen auf 100 mm Flanschbreite darf die Rechtwinkligkeitsabweichung δ_W die Hälfte der zulässigen Ebenheitsabweichung δ_B nicht überschreiten ($\delta_W \leq 0.5 \delta_B$).

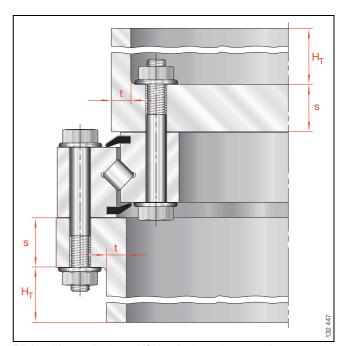


Bild 9 · Kreuzrollenlager XSU zwischen oberer und unterer Anschlusskonstruktion

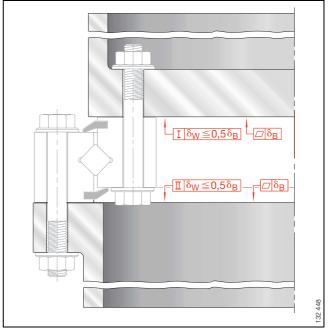


Bild 10 · Zulässige Ebenheitsabweichung

Einbau

Vorbereitungen zum Einbau

Kreuzrollenlager sind Präzisions-Maschinenelemente. Diese Lager müssen vor und während der Montage sehr sorgfältig behandelt werden. Ihre Funktion und Gebrauchsdauer hängt auch von der Sorgfalt beim Einbau ab.

Montageplatz gestalten

In der unmittelbaren Umgebung des Montageplatzes nicht mit spanabhebenden oder stauberzeugenden Maschinen, Geräten, Anlagen arbeiten!

Lager vor Staub, Schmutz, Spänen, Feuchtigkeit, Klebstoffen usw. schützen! Verunreinigungen beeinflussen die Funktion und Gebrauchsdauer der Lager nachhaltig!

Lager möglichst nur in der Werkstatt montieren. Ist das nicht möglich, Einbaustelle und Lager vor Schmutz aus der Umgebung schützen.

Für helle, saubere, faserfreie Unterlagen (z.B. Kunststoff) und gute Lichtverhältnisse sorgen.

Anschlusskonstruktion zum Einbau der Lager vorbereiten

Die Bohrungen und Kanten der Anschlussbauteile müssen gratfrei sein

vorhandene Grate mit Ölstein entfernen (Bild 1).

Die Auflageflächen für die Lagerringe müssen sauber sein. Reinigung (Bild 1):

- Reinigungsmittel mit Pinsel oder geeignetem, nicht fusselnden Lappen auftragen.
- Fremdstoffe entfernen und Flächen trocknen.

Sicherstellen, dass alle Anschlussbauteile und Schmierstoffkanäle frei von Reinigungs-, Lösungsmitteln und Waschemulsionen sind!

Die Lagersitzflächen können rosten oder das Laufbahnsystem kann verunreinigt werden!

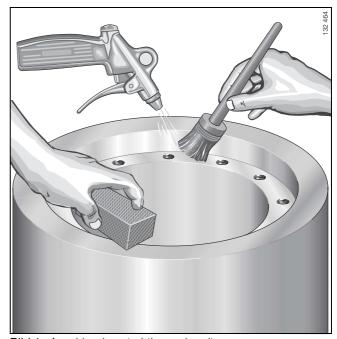


Bild 1 · Anschlusskonstruktion vorbereiten

Lagersitz- und Lager-Anschraubflächen an der Anschlusskonstruktion kontrollieren

Baureihe SX (Bild 2)

Oberflächengüte sowie Form- und Lagegenauigkeit der Anschraubflächen nach Kapitel Gestaltung der Lagerung bzw. Montagezeichnung kontrollieren.

Die Mindestfestigkeit der Anschlussbauteile unter den Schraubenköpfen bzw. Muttern beträgt 500 N/mm²! Bei Befestigungsschrauben der Festigkeitsklasse 10.9 sind keine Unterlegscheiben notwendig!

Werden Befestigungsschrauben der Festigkeitsklasse 12,9 eingesetzt, muss die Mindestfestigkeit 850 N/mm² betragen oder es müssen vergütete Unterlegscheiben unter den Schrauben/Muttern verwendet werden!

- Einbautoleranzen nach Kapitel Gestaltung der Lagerung Tabelle 1, Seite 29 und Tabelle 2, Seite 31 - bzw. Montagezeichnung kontrollieren.
- Lagersitztiefe t nach Kapitel Gestaltung der Lagerung -Tabelle 2, Seite 31 – bzw. Montagezeichnung kontrollieren.
- Mindestdicke s für Klemmringe und Anschlussflansch sowie Tiefe der Senkungen nach Kapitel Gestaltung der Lagerung -Tabelle 2, Seite 31 – bzw. Montagezeichnung kontrollieren.

Baureihe XV (Bild 3)

- Kantenradius am Gewindeende X, Freistich an der Wellenschulter Y und Schlupffase an der Gehäusebohrung Z nach Montagezeichnung kontrollieren.
- Oberflächengüte sowie Maß-,Form- und Lagegenauigkeit der Sitz- und Anlageflächen kontrollieren, Bild 7 und 8, Seite 32.

Wellen- und Gehäusesitz mit Mikrometerschraube mindestens an zwei Stellen prüfen!

Die Lager-Anlageflächen an der Wellenschulter und in der Gehäusebohrung müssen rechtwinklig zu den zylindrischen Passflächen liegen!

Mindest-Abstützdurchmesser an der Wellenschulter und Mindest-Lagersitztiefe im Gehäuse nach Kapitel Gestaltung der Lagerung, Bild 7 und 8, Seite 32, bzw. Montagezeichnung nicht unterschreiten!

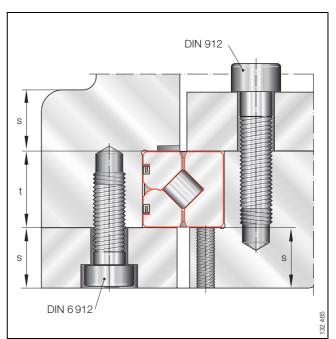


Bild 2 · Lagersitztiefe t, Klemmringdicke s

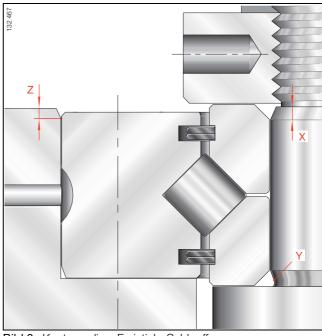
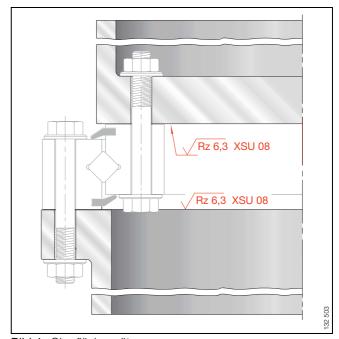


Bild 3 · Kantenradius, Freistich, Schlupffase

Einbau


Vorbereitungen zum Einbau

Baureihe XSU (Bild 4)

- Oberflächengüte sowie Form- und Lagegenauigkeit der Anschraubflächen nach Kapitel *Gestaltung der Lagerung* bzw. Montagezeichnung kontrollieren.
- Flanschdicke s, Flanschhöhe H und Flanschbreite t nach Kapitel Gestaltung der Lagerung, Seite 33 bzw. Montagezeichnung, kontrollieren.
- Ebenheits- und Rechtwinkligkeitsabweichung der Anschlusskonstruktion nach Kapitel Gestaltung der Lagerung, Seite 33, prüfen.

 \bigwedge

Die zulässigen Abweichungen dürfen nicht überschritten werden!

 $\textbf{Bild 4} \cdot \textbf{Oberflächeng\"{u}te}$

Lieferausführung der Kreuzrollenlager

Lager der Baureihen SX, XSU und XV sind:

befettet mit Lithiumkomplexseifenfett KP2N-25 nach DIN 51825 und trockenkonserviert mit VCI-Papier.

Kreuzrollenlager aufbewahren/Lagerfähigkeit

Lager nur liegend aufbewahren, niemals stehend lagern (Bild 5)!

Die Haltbarkeit des Schmierfetts begrenzt die Lagerfähigkeit der Wälzlager. Die verwendeten Schmierfette auf Mineralölbasis sind erfahrungsgemäß bis zu 3 Jahren lagerfähig, wenn folgende Bedingungen eingehalten werden (Bild 6):

- umschlossener Lagerraum
- trockene, saubere Räume mit Temperaturen zwischen 0 °C und +40 °C
- relative Luftfeuchtigkeit nicht über 65%
- keine Einwirkung chemischer Agenzien wie
 - Dämpfe, Gase, Flüssigkeiten.

Nach längerer Aufbewahrung kann das Reibungsmoment vorübergehend höher sein, als bei frisch befetteten Lagern. Außerdem kann die Schmierfähigkeit des Fettes nachgelassen haben.

Kreuzrollenlager auspacken/Lager transportieren

Handschweiß führt zu Korrosion. Hände sauber und trocken halten; ggf. Schutzhandschuhe tragen.

Lager erst unmittelbar vor dem Einbau aus der Original-Verpackung nehmen. Bei beschädigter Original-Verpackung Lager überprüfen.

Große Lager möglichst nur liegend transportieren.

Schwere Lager nur mit Hebezeug an Ringschrauben oder mit Textilgurten transportieren (Bild 7).

Lager nicht mit einer Kette umschlingen! Lager zum Anheben niemals nur an einem Punkt befestigen!

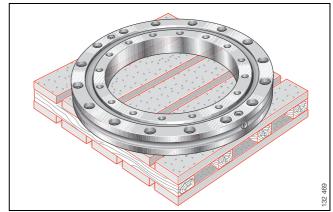


Bild 5 · Lagerung der Kreuzrollenlager

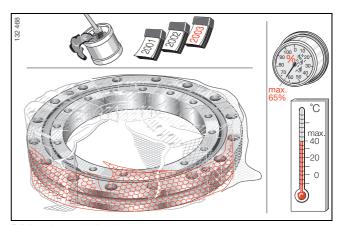


Bild 6 · Lagerfähigkeit

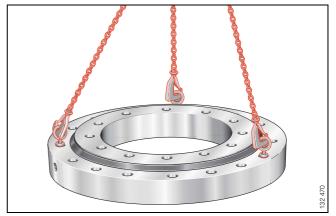


Bild 7 · Transport der Lager

Einbau

Vorbereitungen zum Einbau

Befestigungselemente auswählen

Vorgaben für die Befestigungselemente unbedingt <u>'!\</u> einhalten!

Abweichungen beeinflussen:

- die Haltbarkeit der Schraubenverbindung
- die Funktion z.B. die Genauigkeit und Steifigkeit sowie die Lebensdauer der Lager!

Befestigungsschrauben

Lager nur mit den vorgeschriebenen Schrauben befestigen.

Maßgebend dazu sind die Angaben:

- in dieser Druckschrift
- im technischen Angebotsschreiben
- in der Kunden-Montagezeichnung.

Abmessungen, Anzahl und Festigkeitsklassen der Schrauben sind in den Maßtabellen oder in der Montagezeichnung angegeben.

INA-Präzisions-Nutmuttern

Der geteilte Innenring der Kreuzrollenlager XV kann mit einer Mutter axial fixiert werden. Gleichzeitig wird mit dieser Mutter das Lagerspiel eingestellt bzw. das Lager vorgespannt.

Zum Fixieren und Einstellen des Lagerspiels bzw. zum Vorspannen des Lagers haben sich INA-Präzisions-Nutmuttern der Baureihen AM, ZM und ZMA bewährt (siehe Befestigungselemente, Seite 19).

Anziehdrehmomente M_{AL} der Nutmuttern nach Maßtabelle (Seite 58 bis 60) keinesfalls überschreiten. Das notwendige Anziehdrehmoment sollte auch in der Montagezeichnung angegeben sein!

Präzisions-Nutmuttern nach dem Anschrauben mit den Gewindestiften sichern!

Schraubensicherungen

Normalerweise sind die Schrauben durch die richtige Vorspannung ausreichend gesichert. Bei regelmäßigen Stoßbelastungen oder Vibrationen kann jedoch eine zusätzliche Schraubensicherung notwendig sein.

Nicht jede Schraubensicherung ist für Kreuzrollenlager geeignet!

Niemals Spannscheiben oder Federringe verwenden!

Allgemeine Informationen zu Schraubensicherungen sind in DIN 25 201, spezielle zum Sichern mit Klebstoff in DIN 25 203, Ausgabe 1992, aufgeführt.

Im Anwendungsfall bitte bei den entsprechenden Fachfirmen anfragen.

Allgemeine Sicherheits- und Verhaltensrichtlinien

Montagekräfte nur auf den zu montierenden Lagerring aufbringen; Kräfte niemals über Wälzkörper oder Dichtungen leiten! Direkte Schläge auf die Lagerringe unbedingt vermeiden!

Lagerringe nacheinander und ohne äußere Last befestigen!

Lager nicht mit offener Flamme erwärmen! Der Werkstoff wird örtlich zu stark erhitzt und verliert dadurch seine Härte! Außerdem entstehen Verspannungen im Lager!

Lager nicht unterkühlen. Durch die Bildung von Schwitzwasser kann es zu Korrosion in den Lagern und auf den Lagersitzflächen kommen!

Reihenfolge der Arbeitsschritte

Die Reihenfolge hängt von der Ausführung der Anschlusskonstruktion ab. Die Beschreibung des Einbaus orientiert sich an Anwendungen, die sich in der Praxis bewährt haben.

Bei abweichender Anschlusskonstruktion Lager sinngemäß einbauen oder bei INA rückfragen.

Kreuzrollenlager SX einbauen

Der Außenring ist gesprengt und wird durch drei Halteringe ① zusammengehalten! Halteringe niemals auf Zug belasten!

Sitz- und Anlageflächen der Lagerringe an der Anschlusskonstruktion leicht ölen oder fetten.

Gewinde der Befestigungsschrauben leicht ölen, um unterschiedliche Reibungsfaktoren zu verhindern (Schrauben, die mit Klebstoff gesichert werden, nicht ölen oder fetten).

Lageraußenring befestigen (Bild 8)

- Lager 2 mit dem Außenring in die äußere Anschlusskonstruktion 3 einführen oder einpressen.
- Äußeren Klemmring @ positionieren.
- Befestigungsschrauben ⑤ in den Klemmring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment M_A anziehen
 - Schrauben über Kreuz anziehen @, damit keine unzulässigen Schwankungen zwischen den Schraubenspannkräften auftreten
 - Anziehdrehmomente M_A für Befestigungsschrauben siehe Tabelle 1, Seite 43.

Lagerinnenring befestigen (Bild 9)

- Lager ② in die innere Anschlusskonstruktion ⑥ einsetzen.
- Inneren Klemmring ⑦ positionieren.
- Befestigungsschrauben ® in den Klemmring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment MA anziehen
 - Schrauben über Kreuz anziehen @, damit keine unzulässigen Schwankungen zwischen den Schraubenspannkräften auftreten.
- Lagerfunktion prüfen (siehe Funktion prüfen, Seite 42).

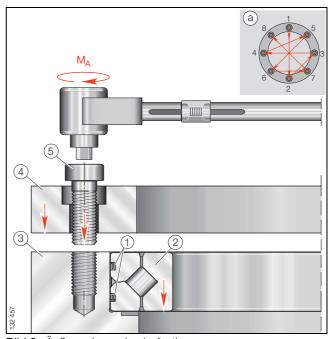


Bild 8 · Äußeren Lagerring befestigen

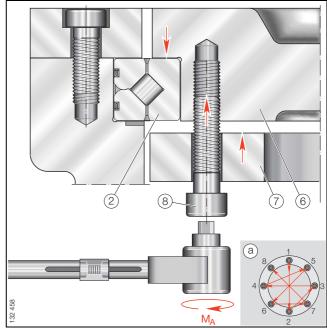


Bild 9 · Inneren Lagerring befestigen

Kreuzrollenlager XV einbauen

Sitz- und Anlageflächen der Lagerringe an der Anschlusskonstruktion und Gewinde auf der Welle leicht ölen oder fetten. Gewinde der Befestigungsschrauben leicht ölen, um unterschiedliche Reibungsfaktoren zu verhindern (Schrauben, die mit Klebstoff gesichert werden, nicht ölen oder fetten).

Lageraußenring befestigen (Bild 10)

- Kreuzrollenlager mit dem Außenring ① in die Aufnahmebohrung der Anschlusskonstruktion ② einführen oder einpressen.
- Befestigungsschrauben ^③ ggf. mit Unterlegscheiben in den Außenring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment M_A anziehen
 - Schrauben über Kreuz anziehen @, damit die Lagerringe möglichst ohne Verspannung montiert werden
 - Innenring beim Anziehen des Außenrings mehrmals um die Distanz mehrerer Schraubenteilungen drehen
 - Anziehdrehmomente M_A für Befestigungsschrauben siehe Tabelle 1, Seite 43.

Lagerinnenring befestigen (Bild 11)

- Welle @ bis zur Anschlagschulter in die Bohrung des Innenrings einführen.
- Innenring ⑤ mit INA-Präzisions-Nutmutter ⑥ axial fixieren
- Lagerspiel bzw. Vorspannung durch Anziehen der Nutmutter mit einem Hakenschlüssel einstellen. Anziehdrehmoment M_{AL} nicht überschreiten.
- Gewindestifte ② zum Sichern der Nutmutter gleichmäßig und wechselseitig ⑥ auf das vorgeschriebene Anziehdrehmoment M_m nach Tabellenwert anziehen.
- Lagerfunktion prüfen (siehe Funktion prüfen, Seite 42).

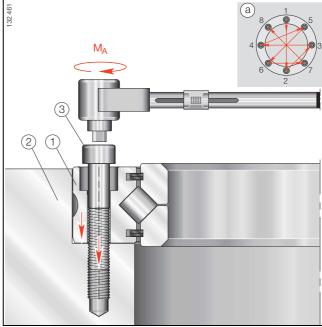


Bild 10 · Äußeren Lagerring befestigen

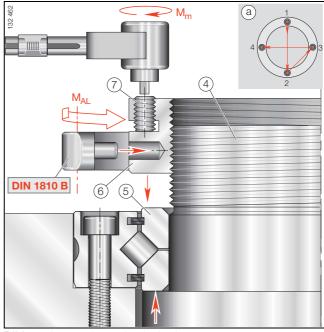


Bild 11 · Inneren Lagerring befestigen

Kreuzrollenlager XSU einbauen

Sitz- und Anlageflächen der Lagerringe an der Anschlusskonstruktion leicht ölen oder fetten.

Gewinde der Befestigungsschrauben leicht ölen, um unterschiedliche Reibungsfaktoren zu verhindern (Schrauben, die mit Klebstoff gesichert werden, nicht ölen oder fetten).

Lageraußenring befestigen (Bild 12)

- Kreuzrollenlager mit dem Außenring ① auf der Anschraubfläche der Anschlusskonstruktion @ positionieren.
- Befestigungsschrauben 3 gaf. mit Unterlegscheiben in den Außenring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment MA anziehen
 - Schrauben über Kreuz anziehen ⓐ, damit ein Verspannen der Lagerringe vermieden wird
 - Innenring beim Anziehen des Außenrings mehrmals um die Distanz mehrerer Schraubenteilungen drehen
 - Anziehdrehmomente M_A für Befestigungsschrauben siehe Tabelle 1, Seite 43.

Lagerinnenring befestigen (Bild 13)

- Kreuzrollenlager mit dem Innenring ④ auf der Anschraubfläche der Anschlusskonstruktion ⑤ bzw. Anschlusskonstruktion auf dem Lagerring positionieren
- Befestigungsschrauben ⑥ ggf. mit Unterlegscheiben in den Innenring einsetzen und schrittweise auf das vorgeschriebene Anziehdrehmoment MA anziehen
 - Schrauben über Kreuz anziehen @, damit ein Verspannen der Lagerringe vermieden wird.
- Lagerfunktion prüfen (siehe Funktion prüfen, Seite 42).

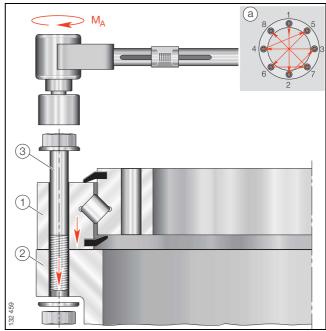


Bild 12 · Äußeren Lagerring befestigen

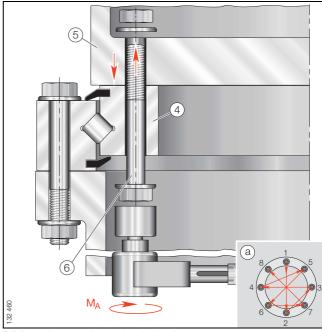


Bild 13 · Inneren Lagerring befestigen

Einbau

Funktion prüfen

Nach beendeter Montage muss der Lauf des eingebauten Kreuzrollenlagers kontrolliert werden.

Läuft das Lager ungleichmäßig oder rau, oder steigt die Temperatur am Lager ungewöhnlich, Lager ausbauen, überprüfen und nach Einbaurichtlinien in dieser Druckschrift neu einbauen!

Laufgenauigkeit

- Laufgenauigkeit mit Messuhr kontrollieren
 - Werte siehe Montagezeichnung oder Maßtabellen.

Abweichende Werte können verursacht sein durch:

- Ungenauigkeiten in der Anschlusskonstruktion
- verspannte Lager durch falsch angezogene Klemmringe, Befestigungsschrauben oder Nutmuttern.

Drehwiderstand

Der Drehwiderstand ist im wesentlichen bestimmt durch:

- den Rollwiderstand der Wälzkörper
- das Lagerspiel oder die Lagervorspannung
- die Reibung der Distanzstücke
- die Reibung der Dichtungen
- das Schmierfett
- eine verformte bzw. fehlerhafte Anschlusskonstruktion
- Fehler beim Einbau der Lager.

Durch die Vorspannung im Laufbahnsystem ist der Drehwiderstand höher als bei einem Lager mit Spiel!

Bei höheren Drehzahlen kann eine hohe Vorspannung zu stärkerer Wärmebildung im Lager führen; ggf. müssen hierzu dann Versuche mit unterschiedlich vorgespannten Lagern durchgeführt werden!

Lagertemperatur

Nach der Inbetriebnahme kann die Temperatur am Lager steigen – bei Fettschmierung z.B. so lange, bis sich das Schmierfett in der Lagerung gleichmäßig verteilt hat.

Ein weiterer Anstieg oder ungewöhnlich hohe Temperaturen können folgende Ursachen haben:

- das Lager wird mit einem falschen Fett geschmiert
- die Schmierstoffmenge im Lager ist zu groß
- die Lagerbelastung ist zu hoch
- die Lager sind verspannt eingebaut
- die Anschlusskonstruktion weicht von den Vorgaben ab.

Einbau

Anziehdrehmomente und Montagevorspannkräfte

 $\label{eq:tabelle 1} \begin{tabular}{ll} Tabelle 1 \cdot Anziehdrehmomente M_A und Montagevorspannkräfte F_M für das drehmomentgesteuerte Anziehen von Befestigungsschrauben (Schaftschrauben) \end{tabular}$

Befestigungs- schraube Abmessung	Spannungs- querschnitt	Kernquerschnitt	Anziehdrel M _A ¹⁾ in Nn Festigkeits	า		F _M ²⁾ in kN	Montagevorspannkraft F _M ²⁾ in kN Festigkeitsklasse			
	A _s mm ²	A _{d3} mm ²	8.8	10.9	12.9	8.8	10.9	12.9		
M 4	8,78	7,75	2,25	3,31	3,87	4,05	5,95	6,96		
M 5	14,2	12,7	4,61	6,77	7,92	6,63	9,74	11,4		
M 6	20,1	17,9	7,8	11,5	13,4	9,36	13,7	16,1		
M 8	36,6	32,8	19,1	28	32,8	17,2	25,2	29,5		
M10	58	52,3	38	55,8	65,3	27,3	40,2	47		
M12	84,3	76,2	66,5	97,7	114	39,9	58,5	68,5		
M14	115	105	107	156	183	54,7	80,4	94,1		
M16	157	144	168	246	288	75,3	111	129		
M18	192	175	229	336	394	91,6	134	157		
M20	245	225	327	481	562	118	173	202		
M22	303	282	450	661	773	147	216	253		
M24	353	324	565	830	972	169	249	291		

 $[\]begin{array}{ll} \text{1)} \ \overline{M_A \text{ nach VDI-Richtlinie 2230 (Juli 1986) für} & \mu_K = 0,08 \text{ und } \mu_G = 0,12. \\ \end{array}$ $\begin{array}{ll} \text{2)} \ F_M \text{ nach VDI-Richtlinie 2230 (Juli 1986) für} & \mu_G = 0,12. \\ \end{array}$

abgedichtet und nicht abgedichtet

Merkmale

Kreuzrollenlager

- sind Baueinheiten, bestehend aus Außenringen, Innenringen, Wälzkörpern (Zylinderrollen) und Distanzstücken
 - abhängig von der Baureihe Innen- oder Außenring ungeteilt oder in Umfangsrichtung gesprengt
- nehmen durch die X-Anordnung der Wälzkörper axiale Belastungen aus beiden Richtungen sowie radiale Belastungen, Kippmomentbelastungen und beliebige Lastkombinationen mit einer Lagerstelle auf
 - dadurch lassen sich Konstruktionen mit zwei Lagerstellen auf eine Lagerstelle reduzieren (siehe Seite 45)
- sind sehr steif und haben eine sehr hohe Laufgenauigkeit
- sind vorgespannt und bei Fettschmierung geeignet für Umfangsgeschwindigkeiten bis
 - $-2 \text{ m/s (n} \cdot D_{\text{M}} = 38200)$
- sind befettet, können aber auch mit Öl geschmiert werden
- sind besonders montagefreundlich
- sind auch in rostgeschützter Ausführung mit der INA-Spezialbeschichtung Corrotect® lieferbar.

Kreuzrollenlager SX

- haben Normalspiel oder sind vorgespannt
- werden mit Klemmringen in der Anschlusskonstruktion
- sind mit Normalspiel geeignet für Umfangsgeschwindig-
 - bei Ölschmierung bis 8 m/s (n \cdot D_M = 152 800)
 - bei Fettschmierung bis 4 m/s (n \cdot D_M = 76 400)
- sind vorgespannt und bei Ölschmierung geeignet für Umfangsgeschwindigkeiten bis
 - $-4 \text{ m/s (n} \cdot D_{\text{M}} = 76400).$

Kreuzrollenlager XSU

- sind vorgespannt
- werden mit den Lagerringen direkt mit der Anschlusskonstruktion verschraubt.

Kreuzrollenlager XV

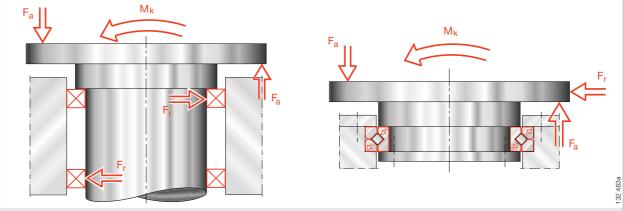
- werden mit dem Außenring mit der Anschlusskonstruktion verschraubt
- der Innenring wird durch eine Nutmutter fixiert
- sind durch die Nutmutter sehr feinfühlig spieleinstellbar bzw. vorspannbar.

Kreuzrollenlager

- entsprechen der Maßreihe 18 nach DIN 616
- Zvlinderrollen nach DIN 5402. Distanzstücke aus Kunststoff
- Außenring in Umfangsrichtung gesprengt und durch drei Halteringe zusammengehalten

- nicht abgedichtet
- für Betriebstemperaturen von -30 °C bis +80 °C
- für Wellen von 70 mm bis 500 mm

χV



- Zylinderrollen nach DIN 5402, Distanzstücke aus Kunststoff
- Innenring in Umfangsrichtung geteilt
- beidseitig abgedichtet
- für Betriebstemperaturen von -30 °C bis +80 °C

für Wellen von 30 mm bis 110 mm radial und axial je zwei Schmiernippel

Konventionelle Lagerung mit zwei Lagerstellen

Optimierte Lagerung mit einem Kreuzrollenlager

Präzisions-Nutmuttern

AM ZM, ZMA

Merkmale

Präzisions-Nutmuttern

- werden bei Kreuzrollenlagern XV eingesetzt, um
 - den geteilten Innenring axial zu fixieren
 - das Lagerspiel einzustellen bzw. das Lager vorzuspannen
- haben eine hohe Planlaufgenauigkeit
- haben eine hohe Steifigkeit
- übertragen Axialkräfte.

Präzisions-Nutmuttern AM

- sind segmentiert, um die Klemmkräfte aufzubringen:
 - die Innensechskant-Gewindestifte werden angezogen
 - die Segmente verformen sich
 - die Gewindeflanken der Segmente drücken gegen die Flanken des Wellengewindes
 - die Nutmutter kann sich nicht mehr lösen.
- werden durch die Gewindestifte in den Segmenten gegen Verdrehen gesichert.

Präzisions-Nutmuttern ZM, ZMA

- haben zwei radial angeordnete Blockierstifte, um die Klemmkräfte aufzubringen:
 - die Blockierstifte sind zusammen mit dem Innengewinde der Nutmutter gefertigt
 - sie greifen kammartig in das Wellengewinde ein
 - Konter-Gewindestifte fixieren die Blockierstifte
 - die Nutmutter kann sich nicht mehr lösen.
- sind durch die Blockierstifte gegen Verdrehen gesichert.

Losbrechmoment und axiale Bruchlast

Die Losbrechmomente M_L sind in den Maßtabellen angegeben und beziehen sich auf eine Nutmutter, die mit dem Anziehdrehmoment MAL gegen einen festen Wellenbund angezogen und gesichert ist; siehe Befestigungselemente, Seite 19.

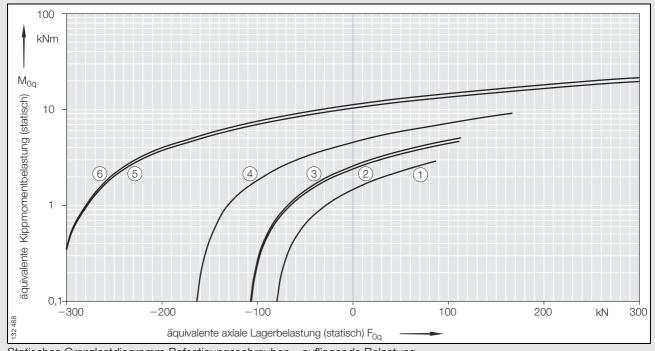
Axiale Bruchlasten F_{aB} gelten für ein Wellengewinde mit:

- der Toleranz 6g oder genauer
- einer Mindestfestigkeit von 700 N/mm²

Bei dynamischer Belastung sind 75% der Bruchlast FaB zulässig.

für Wellengewinde von M15×1 bis M90×2

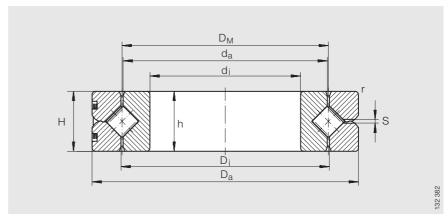
- ZM für Wellengewinde von M6×0,5 bis M150×2
- ZMA schwere Reihe
- ZMA für Wellengewinde von M15×1 bis M100×2


Maßtabellen

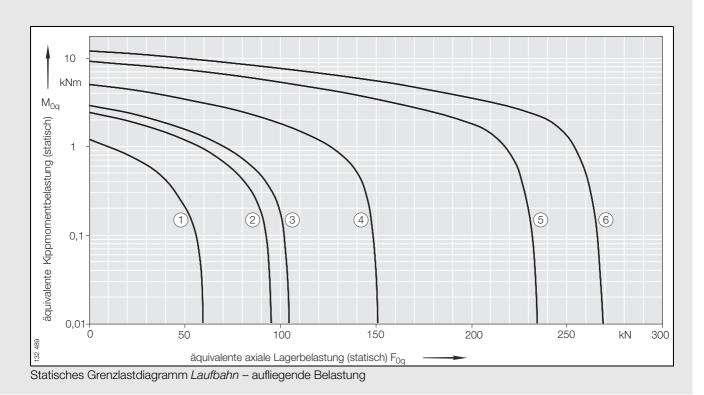
Baureihe SX

M. Otaladia	A I													
Maßtabelle ·	Abmess	sungen i	n mm											
Kurzzeichen	Pos. ⁴⁾	Ge- wicht	Abme	essungen								Befestigungs- schrauben	Laufger zur Lau	nauigkeit ıfbahn
			D _M	d _i	Da	H ¹⁾	h ¹⁾	d _a	D _i	r _s	S ²⁾	F _{r zul} (Reibschluss)	radial	axial
		≈ kg		K6	h6					min.		kN		
SX 01 1814	1	0,3	80	70+0,004 -0,015	90_0,022	10±0,10	10_0,01	79,5	80,5	0,6	1,2	7,5	0,010	0,010
SX 01 1818	2	0,4	102	90+0,004 -0,018	115_0,022	13±0,12	13_0,01	101,5	102,5	1	2	10	0,010	0,010
SX 01 1820	3	0,5	112	100+0,004	125_0,025	13±0,12	13_0,01	111,5	112,5	1	2	10	0,010	0,010
SX 01 1824	4	0,8	135	120+0,004	150_0,025	16±0,12	16_0,01	134,4	135,6	1	2	23	0,010	0,010
SX 01 1828	⑤	1,1	157	140+0,004	175_0,025	18±0,12	18_0,01	156,3	157,7	1,1	2,5	42,3	0,015	0,010
SX 01 1832	6	1,7	180	160+0,004 -0.021	200_0,029	20±0,12	20_0,025	179,2	180,8	1,1	2,5	42,3	0,015	0,010

¹⁾ H:Bauhöhe des Lagers, h: Höhe des einzelnen Ringes.


⁴⁾ Siehe statisches Grenzlastdiagramm *Laufbahn* und *Befestigungsschrauben*.

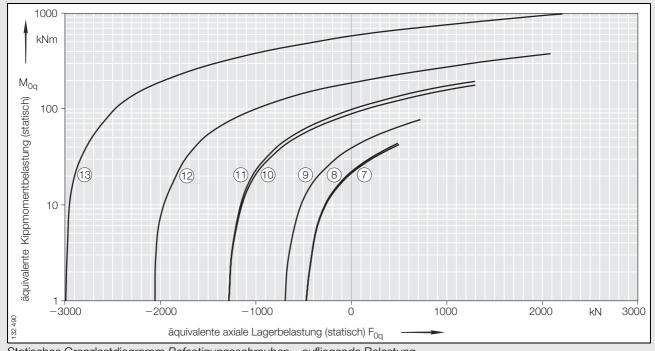
Statisches Grenzlastdiagramm Befestigungsschrauben – aufliegende Belastung


 $^{^{2)}}$ Schmierbohrung: 3 Bohrungen gleichmäßig über den Umfang verteilt.

³⁾ Tragzahlen radial: nur für rein radiale Belastung.

C	`	١	,
ũ	7	1	١

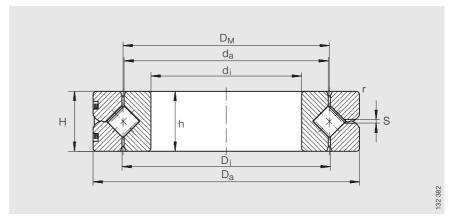
									Transplan							
Normalspiel			Spielarm RLO		Vorspannung VSP		Tragzahlen				Grenzdrehzahlen				abmessungs- gleich mit	
radiales Spiel		axiales Kippspi	iel	radiales Spiel	Vor- spannung			axial		radial ⁶	3)	bei Norma	ılspiel	bei Vorspa	annung	ISO- Maßreihe 18
min.	max.	min.	max.	max.	max.	min.	max.	dyn. C _a kN	stat. C _{0a} kN	dyn. C _r kN	stat. C _{0r} kN	n _G Öl min ⁻¹	n _G Fett min ⁻¹	n _G Öl min ⁻¹	n _G Fett min ⁻¹	
 0,003	0,015	0,006	0,03	0,003	0,006	0,003	0,015	18	60	12	30	1910	955	955	475	618 14
0,003	0,015	0,006	0,03	0,003	0,006	0,003	0,015	26	96	17	47	1500	750	750	375	618 18
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	28	106	18	52	1360	680	680	340	618 20
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	41	153	26	75	1130	565	565	280	618 24
 0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	64	237	41	116	975	485	485	240	618 28
0,005	0,020	0,010	0,04	0,004	0,008	0,005	0,020	69	272	44	133	850	425	425	210	618 32


INA 49

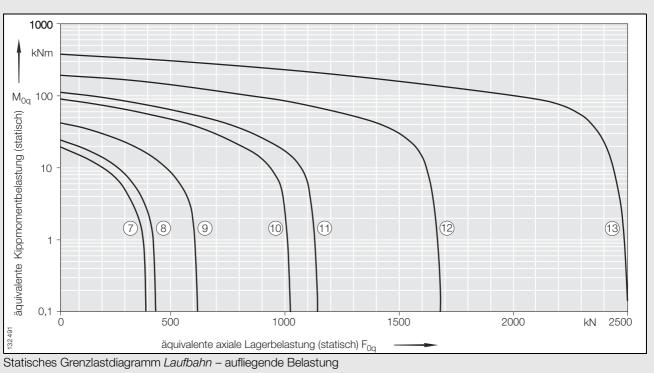
Baureihe SX

Maßtabelle · Ab	messunge	en in mm											
Kurzzeichen	Pos. ⁴⁾	Ge- wicht	Abmes	ssungen		Laufger zur Lauf	nauigkeit fbahn						
			D _M	d _i	Da	H ¹⁾	h ¹⁾	d _a	Di	r _s	S ²⁾	radial	axial
		≈ kg		K6	h6					min.			
SX 01 1836	7	2,3	202	180+0,004 -0,021	225_0,029	22±0,13	22_0,025	201,2	202,8	1,1	2,5	0,015	0,010
SX 01 1840	8	3,1	225	200+0,005	250_0,029	24±0,13	24_0,025	224,2	225,8	1,5	2,5	0,015	0,010
SX 01 1848	9	5,3	270	240+0,005 -0,024	300_0,032	28±0,13	28_0,025	269,2	270,8	2	2,5	0,020	0,010
SX 01 1860	100	12	340	300+0,005	380_0,036	38±0,14	38_0,05	339,2	340,8	2,1	2,5	0,020	0,010
SX 01 1868	11)	13,5	380	340+0,007	420_0,040	38±0,14	38_0,05	379,2	380,8	2,1	2,5	0,025	0,010
SX 01 1880	12	24	450	400+0,007	500_0,040	46±0,15	46_0,05	449	451	2,1	2,5	0,030	0,010
SX 01 18/500	13	44	560	500+0,008 -0.032	620_0,044	56±0,16	56_0,05	558,8	561,2	3	2,5	0,040	0,010

¹⁾ H: Bauhöhe des Lagers, h: Höhe des einzelnen Ringes.


⁴⁾ Siehe statisches Ganzlastdiagramm *Laufbahn* und *Befestigungsbahnen*.

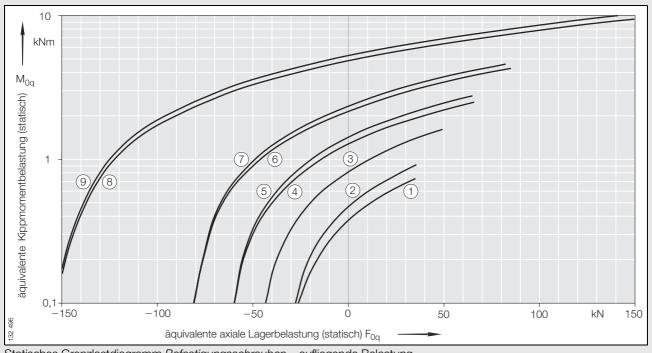
Statisches Grenzlastdiagramm Befestigungsschrauben – aufliegende Belastung

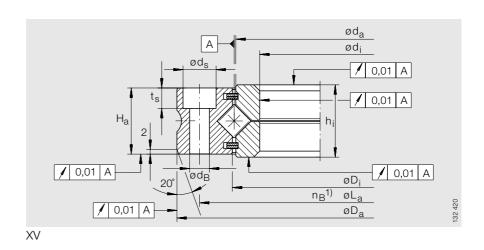

 $^{^{2)}}$ Schmierbohrung: 3 Bohrungen gleichmäßig über den Umfang verteilt.

³⁾ Tragzahlen radial: nur für rein radiale Belastung.

	`	١	1
c	7	1	١

N 	Normals	spiel			Spielarm	RLO	Vorspai VSP	nnung	Tragz	ahlen			Grenzo	drehzahl	en		abmessungs- gleich mit
	adiales Spiel		axiales Kippspi	iel	radiales Spiel	Vor- spannung			axial		radial ³⁾		bei Norma	ılspiel	bei Vorspa	annung	ISO- Maßreihe 18
m	nin.	max.	min.	max.	max.	max.	min.	max.	dyn. C _a kN	stat. C _{0a} kN	dyn. C _r kN	stat. C _{0r} kN	n _G Öl min ⁻¹	n _G Fett min ⁻¹	ÖÏ	n _G Fett min ⁻¹	
0	,005	0,025	0,010	0,05	0,005	0,010	0,005	0,025	98	381	63	187	755	375	375	185	618 36
0	,005	0,025	0,010	0,05	0,005	0,010	0,005	0,025	106	425	68	208	680	340	340	170	618 40
0	,010	0,030	0,020	0,06	0,005	0,010	0,005	0,025	149	612	95	300	565	280	280	140	618 48
0	,010	0,040	0,020	0,08	0,005	0,010	0,005	0,025	245	1027	156	504	450	225	225	110	618 60
0	,010	0,040	0,020	0,08	0,005	0,010	0,005	0,025	265	1148	167	563	400	200	200	100	618 68
0	,010	0,050	0,020	0,10	0,005	0,010	0,005	0,025	385	1699	244	833	340	170	170	85	618 80
0	,015	0,060	0,030	0,12	0,006	0,012	0,005	0,030	560	2538	355	1244	275	135	135	65	618/500


abgedichtet


Baureihe XV

Maßtabelle · A	bmessunge	en in mm								
Kurzzeichen	Pos. ²⁾	Gewicht	Abmessunge	en		Befestig bohrung				
		≈ kg	D _a	d _i J6	Ha	hi	Di	d _a	L _a	n _B 1)
XV 30	1	0,37	75 ⁺⁰ _{-0,019}	30+0,008	14	15	42,5	41,5	60	12
XV 40	2	0,44	85 ⁺⁰ -0,022	40 +0,010 -0,006	14	15	52,5	51,5	70	12
XV 50	3	0,67	100 +0 -0,022	50 +0,010 -0,006	16	17	64,5	63,5	85	12
XV 60	4	0,75	110 +0 -0,022	60 ^{+0,013} -0,006	16	17	74,5	73,5	95	16
XV 70	⑤	0,84	120 +0 -0,022	70 +0,013 -0,006	16	17	84,5	83,5	105	16
XV 80	6	1,18	135 ⁺⁰ _{-0,025}	80 ^{+0,013} -0,006	18	19	95,5	94,5	120	16
XV 90	7	1,29	145 ⁺⁰ _{-0,025}	90 +0,016 -0,006	18	19	105,5	104,5	130	16
XV 100	8	2,31	170 +0 -0,025	100 +0,016 -0,006	22	23	117,5	116,5	150	16
XV 110	9	2,48	180 ⁺⁰ _{-0,025}	110 +0,016	22	23	127,5	126,5	160	16

Anzahl der Bohrungen pro Ring.

 $^{^{2)}}$ Siehe statisches Grenzlastdiagramm Laufbahn und Befestigungsschrauben.

			Befestigungs-	Tragzahle	en			Grenzdrehzahlen	
			schrauben	axial ra				bei Vorspannung	bei Spiel
d _B	d _s	t _s	F _r zul. (Reibschluss) kN	dyn. C _a kN	stat. C _{0a} kN	dyn. C _r kN	stat. C _{0r} kN	min ⁻¹	min ⁻¹
4,6	8	4,6	5	11,6	26	7,4	10,4	910	1819
4,6	8	4,6	5	13,6	34,5	8,7	13,8	735	1469
5,6	10	5,4	8,18	20,6	54	13,1	21,5	597	1194
5,6	10	5,4	10,9	22,6	64	14,4	25,5	516	1032
5,6	10	5,4	10,9	23,6	70	15,1	28	455	910
6,6	11	6,4	15,3	33,5	101	21,4	40,5	402	804

22,3

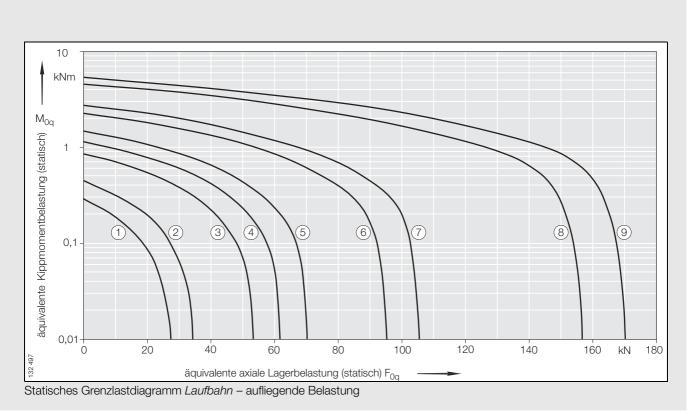
34,4

36,2

44,5

6,6

6,4

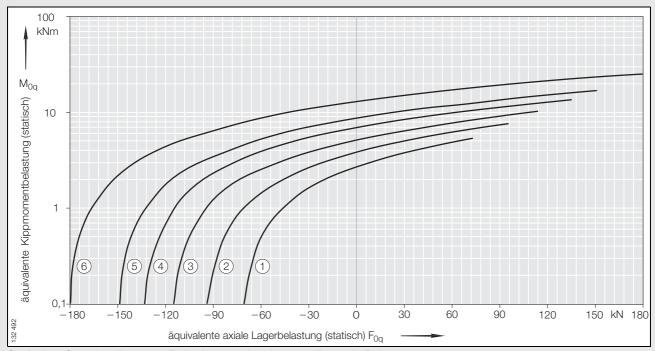

8,5

8,5

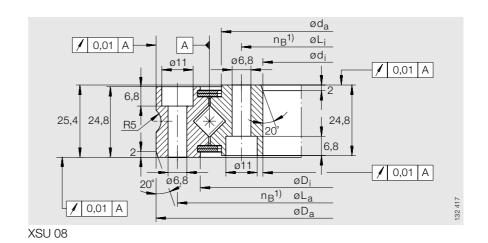
15,3

28,2

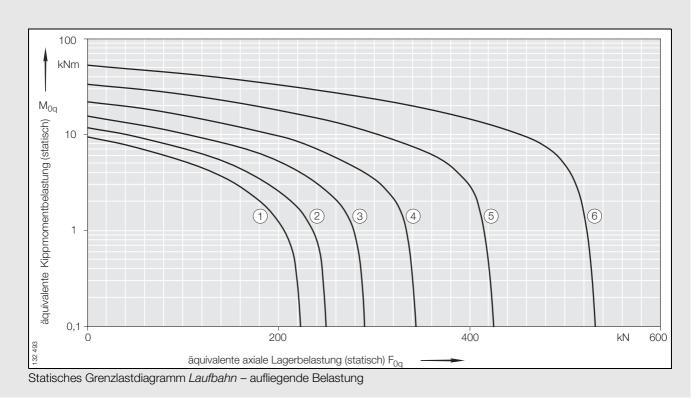
28,2



abgedichtet

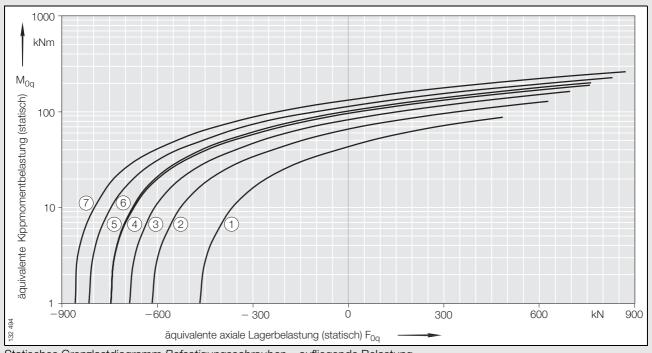

Baureihe XSU

Maßtabelle · Abm	nessungen in r	nm							
Kurzzeichen	Pos. ²⁾	Gewicht	Abmessungen				Befestig	ungsbohrung	en
		≈ kg	D _a	d _i H6	Di	da	La	Li	n _B ¹⁾
XSU 080168	1	3,3	205+0	130+0,025	174	159	190	145	12
XSU 080188	2	3,7	225+0	150+0,025	194	179	210	165	16
XSU 080218	3	4,3	255 ⁺⁰ _{-0,032}	180+0,025	224	209	240	195	20
XSU 080258	4	5,1	295 ⁺⁰ _{-0,032}	220+0,029	264	249	280	235	24
XSU 080318	5	6,3	355 ⁺⁰ _{-0,036}	280+0,032	324	309	340	295	28
XSU 080398	6	7.8	435+0	360+0,036	404	389	420	375	36


¹⁾ Anzahl der Bohrungen pro Ring.

 $^{^{2)}}$ Siehe statisches Grenzlastdiagramm Laufbahn und Befestigungsschrauben.

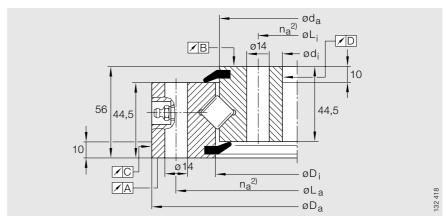
Befestigungs-	Tragzahlen				Grenzdrehzahlen
schrauben	axial		radial		
F _{r zul.} (Reibschluss)	dyn. C _a	stat.	dyn. C _r	stat. C _{0r}	
kN	kÑ	C _{0a} kN	kŇ	kŇ	min ⁻¹
8,18	66	240	42	96	227
10,9	71	275	46	110	203
13,6	77	315	49	127	175
16,4	84	375	54	151	148
19,1	93	465	59	185	120
24.5	106	590	68	236	96



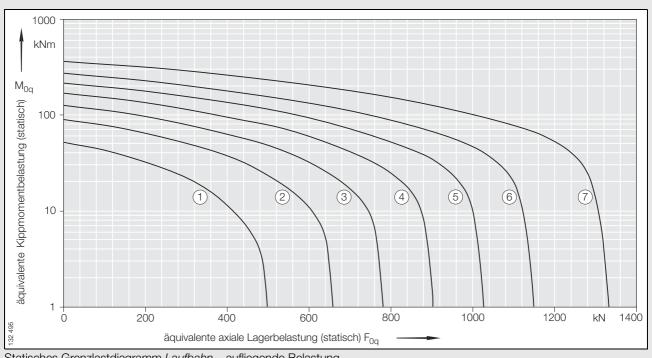
abgedichtet

Baureihe XSU

17	I D 3)	10	I				In (::			
Kurzzeichen	Pos. ³⁾	Gewicht	Abmessungen		igsbohrunge					
			D _a ¹⁾	d _i 1)	Di	da	La	$n_B^{(2)}$	Li	n _i ²⁾
		≈								
		kg	h7	H7						
XSU 14 0414	1	28	484 ⁺⁰ _{-0,06}	344 +0,06	415	413	460	24	368	24
XSU 14 0544	2	38	614 ⁺⁰ _{-0,07}	474 +0,06	545	543	590	32	498	32
XSU 14 0644	3	44	714+0	574 ^{+0,07}	645	643	690	36	598	36
XSU 14 0744	4	52	814+0	674 +0,08	745	743	790	40	698	40
XSU 14 0844	5	60	914+0	774 ^{+0,08}	845	843	890	40	798	40
XSU 14 0944	6	67	1014+0	874 +0,09	945	943	990	44	898	44
XSU 14 1094	7	77	1164+0	1024 +0,11	1095	1093	1140	48	1048	48

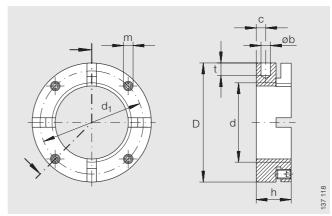

¹⁾ Zentrierlängen siehe Maßzeichnung.

Statisches Grenzlastdiagramm Befestigungsschrauben – aufliegende Belastung

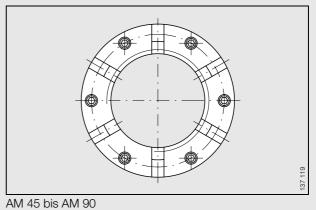

²⁾ Anzahl der Bohrungen pro Ring.

³⁾ Siehe statisches Grenzlastdiagramm *Laufbahn* und *Befestigungsschrauben*.

XSU 14 4 Kegelschmiernippel, DIN 71412 – A M8×1, gleichmäßig am Umfang verteilt und versenkt

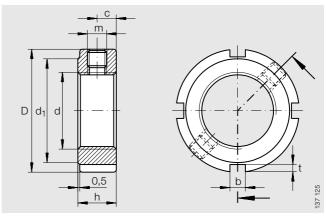

Befestigungs- schrauben	Laufgena zur Laufb				Tragzahl	Tragzahlen					
Schrauben	Zur Lauib	ann			axial		radial	radial			
F _r zul. (Reibschluss) kN	A	В	С	D	dyn. C _a kN	stat. C _{0a} kN	dyn. C _r kN	stat. C _{0r} kN	min ⁻¹		
98,3	0,04	0,04	0,06	0,06	229	520	146	250	92		
131	0,04	0,04	0,07	0,06	270	680	170	330	70		
147	0,05	0,05	0,08	0,07	270	680	185	395	59		
164	0,05	0,05	0,09	0,08	315	930	200	455	51		
164	0,06	0,06	0,09	0,08	340	1050	215	510	45		
180	0,06	0,06	0,11	0,09	360	1170	227	580	40		
197	0,07	0,07	0,11	0,11	390	1360	246	670	35		

Statisches Grenzlastdiagramm Laufbahn – aufliegende Belastung


Präzisions-Nutmuttern

Baureihe AM

AM 15 bis AM 40


Maßtabell	e · Abmessu	ngen in	mm											
Gewinde	Kurz-	Ge-	Abme	essung	gen					Gewindestift	Nutmutter			
zeichen		wicht								Anzieh- drehmoment	Axiale Bruchlast	Losbrech- moment bei	Anzieh- drehmoment	Massen- trägheits- moment
			D	h	b	t	d ₁	С	m	M _m	F _{aB}	ML	M _{AL}	M _M
d		≈ kg								Nm	kN	Nm	Nm	kg · cm²
M15×1	AM 15	0,06	30	18	4	5	23	5	M4	2	102	20	10	0,089
M17×1	AM 17	0,07	32	18	4	5	26	5	M4	2	120	25	15	0,113
M20×1	AM 20	0,13	38	18	4	6	29,5	5	M6	5	145	45	18	0,225
M25×1,5	AM 25	0,16	45	20	5	6	35	6	M6	5	205	60	25	0,491
M30×1,5	AM 30	0,2	52	20	5	7	40	6	M6	5	246	70	32	0,86
M35×1,5	AM 35/58	0,23	58	20	5	7	48	6	M6	5	282	90	40	1,3
M35×1,5	AM 35	0,33	65	22	6	8	48	6	M6	5	329	100	40	2,41
M40×1,5	AM 40	0,3	65	22	6	8	51	6	M6	5	347	120	55	2,26
M45×1,5	AM 45	0,34	70	22	6	8	56	6	M6	5	360	220	65	2,94
M50×1,5	AM 50	0,43	75	25	6	8	62	8	M6	5	450	280	85	4,34
M60×2	AM 60	0,65	90	26	6	8	75	8	M6	5	547	365	100	9,4
M70×2	AM 70	0,79	100	28	8	10	85	9	M8	10	654	450	130	14,7
M90×2	AM 90	1,58	130	32	8	10	112	13	M8	10	912	1 100	200	49,4

Präzisions-Nutmuttern

Baureihen ZM ZMA

Gewinde	Kurzzeichen	Ge-	Abmessungen							Gewindestift	Nutmutter				
		wicht								Anzieh- drehmoment	Axiale Bruchlast	Losbrech- moment bei	Anzieh- drehmoment	Massen- trägheits- moment	
			D	h	b	t	d ₁	С	m	M _m	F _{aB}	ML	M_{AL}	M _M	
d		≈ kg								Nm	kN	Nm	Nm	kg · cm²	
M 6×0,5	ZM 06	0,01	16	8	3	2	12	4	M4	1	17	20	2	0,004	
M 8×0,75	ZM 08	0,01	16	8	3	2	12	4	M4	1	23	25	4	0,004	
M10×1	ZM 10	0,01	18	8	3	2	14	4	M4	1	31	30	6	0,006	
M12×1	ZM 12	0,015	22	8	3	2	18	4	M4	1	38	30	8	0,013	
M15×1	ZM 15	0,018	25	8	3	2	21	4	M4	1	50	30	10	0,021	
	ZMA 15/33	0,08	33	16	4	2	28	8	M5	3	106	30	10	0,14	
M17×1	ZM 17	0,028	28	10	4	2	23	5	M5	3	57	30	15	0,401	
M20×1	ZM 20	0,035	32	10	4	2	27	5	M5	3	69	40	18	0,068	
	ZMA 20/38	0,12	38	20	5	2	33	10	M5	3	174	40	18	0,297	
	ZMA 20/52	0,32	52	25	5	2	47	12,5	M5	3	218	40	18	1,38	
M25×1,5	ZM 25	0,055	38	12	5	2	33	6	M6	5	90	60	25	0,157	
	ZMA 25/45	0,16	45	20	5	2	40	10	M6	5	211	60	25	0,572	
	ZMA 25/58	0,43	58	28	6	2,5	52	14	M6	5	305	60	25	2,36	
M30×1,5	ZM 30	0,075	45	12	5	2	40	6	M6	5	112	70	32	0,304	
	ZMA 30/52	0,22	52	22	5	2	47	11	M6	5	270	70	32	1,1	
	ZMA 30/65	0,55	65	30	6	2,5	59	15	M6	5	390	70	32	3,94	
M35×1,5	ZM 35	0,099	52	12	5	2	47	6	M6	5	134	80	40	0,537	
	ZMA 35/58	0,26	58	22	6	2,5	52	11	M6	5	300	80	40	1,66	
	ZMA 35/70	0,61	70	30	6	2,5	64	15	M6	5	460	80	40	5,2	
M40×1,5	ZM 40	0,14	58	14	6	2,5	52	7	M6	5	157	95	55	0,945	
	ZMA 40/62	0,27	62	22	6	2,5	56	11	M8	15	310	95	55	2,07	
	ZMA 40/75	0,67	75	30	6	2,5	69	15	M8	15	520	95	55	6,72	
M45×1,5	ZM 45	0,17	65	14	6	2,5	59	7	M6	5	181	110	65	1,48	
	ZMA 45/68	0,35	68	24	6	2,5	62	12	M8	15	360	110	65	3,2	
	ZMA 45/85	0,92	85	32	7	3	78	16	M8	15	630	110	65	11,9	
M50×1,5	ZM 50	0,19	70	14	6	2,5	64	7	M6	5	205	130	85	1,92	
	ZMA 50/75	0,43	75	25	6	2,5	68	12,5	M8	15	415	130	85	4,89	
	ZMA 50/92	1,06	92	32	8	3,5	84	16	M8	15	680	130	85	16,1	
M55×2	ZM 55	0,23	75	16	7	3	68	8	M6	5	229	150	95	2,77	
	ZMA 55/98	1,17	98	32	8	3,5	90	16	M8	15	620	150	95	20,5	

ZM, ZMA

Gewinde	Kurzzeichen	Ge-	Abm	essu	ngen					Gewindestift Nutmutter					
		wicht								Anzieh- drehmoment	Axiale Bruchlast	Losbrech- moment bei	Anzieh- drehmoment	Massen- trägheits- moment	
			D	h	b	t	d ₁	С	m	M _m	F _{aB}	ML	M _{AL}	M _M	
d		≈ kg								Nm	kN	Nm	Nm	kg · cm²	
/ 60×2	ZM 60	0,25	80	16	7	3	73	8	M 6	5	255	180	100	3,45	
	ZMA 60/98	1,07	98	32	8	3,5	90	16	M 8	15	680	180	100	19,6	
√ 65×2	ZM 65	0,27	85	16	7	3	78	8	M 6	5	280	200	120	4,24	
	ZMA 65/105	1,21	105	32	8	3,5	97	16	M 8	15	750	200	120	25,6	
M 70×2	ZM 70	0,36	92	18	8	3,5	85	9	M 8	15	305	220	130	6,61	
	ZMA 70/110	1,4	110	35	8	3,5	102	17,5	M 8	15	810	220	130	33	
M 75×2	ZM 75	0,4	98	18	8	3,5	90	9	M 8	15	331	260	150	8,41	
	ZMA 75/125	2,11	125	38	8	3,5	117	19	M 8	15	880	260	150	62,2	
/ 80×2	ZM 80	0,46	105	18	8	3,5	95	9	M 8	15	355	285	160	11,2	
	ZMA 80/120	1,33	120	35	10	4	105	17,5	M 8	15	810	285	160	44,6	
√ 85×2	ZM 85	0,49	110	18	8	3,5	102	9	M 8	15	385	320	190	13,1	
√ 90×2	ZM 90	0,7	120	20	10	4	108	10	M 8	15	410	360	200	21,8	
	ZMA 90/130	2,01	130	38	10	4	120	19	M 8	15	910	360	200	64,1	
	ZMA 90/155	3,36	155	38	10	4	146	19	M 8	15	1 080	360	200	150	
√1100×2	ZM 100	0,77	130	20	10	4	120	10	M 8	15	465	425	250	28,6	
	ZMA 100/140	2,23	140	38	12	5	128	19	M10		940	425	250	82,8	
M105×2	ZM 105	1,05	140	22	12	5	126	11	M10	20	495	475	300	44,5	
M110×2	ZM 110	1,09	145	22	12	5	133	11	M10	20	520	510	350	50,1	
M115×2	ZM 115	1,13	150	22	12	5	137	11	M10	-	550	550	400	56,2	
M120×2	ZM 120	1,28	155	24	12	5	138	12	M10	= *	580	600	450	68,4	
/1125×2	ZM 125	1,33	160	24	12	5	148	12	M10	20	610	640	500	76,1	
M130×2	ZM 130	1,36	165	24	12	5	149	12	M10	20	630	700	550	84,3	
M140×2	ZM 140	1,85	180	26	14	6	160	13	M12	38 38	690	800	600	133	

Anwendungsbeispiel

Lkw-Ladekran

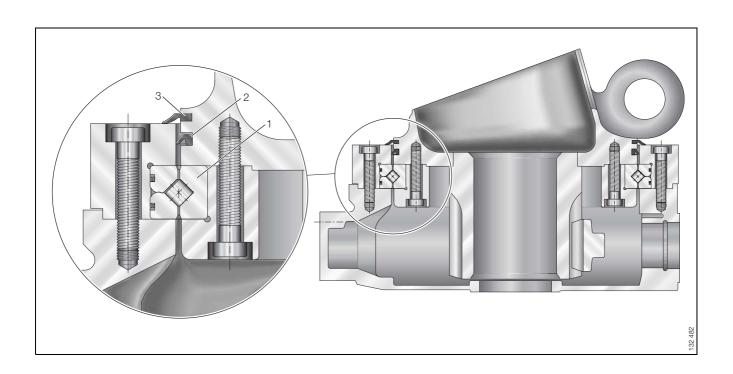
Fußlagerung

Der abgebildete Ladekran hat mit Teleskopausleger eine Reichweite von 12,5 m und hebt dort ein Gewicht von 960 kg. Mit zusätzlich montierten Auslegern erreicht er 19,1 m und trägt dabei 270 kg.

Die Linearbewegung der hydraulisch angetriebenen Zahnstange wird mit einem Ritzel in die Drehbewegung des Kranes umgesetzt. Hohe Axial- und Radialbelastungen sowie große Kippmomente muss die Lagerung übertragen. Die Fußlagerung des Kranes soll möglichst klein sein. Hitze, Kälte und Nässe wirken auf das Lager.

Betriebsdaten (Lagerbelastung)										
resultierende Axialbelastung	Fa	35 kN								
resultierende Radialbelastung	Fr	170 kN								
resultierender Kippmoment	M _k	170 kNm								

INA-Konstruktionslösung


Der Kran dreht sich in einem vorgespannten Kreuzrollenlager SX..VSP, deshalb treten keine Kippbewegungen auf. Dieses besonders steife Lager nimmt Belastungen aus allen Richtungen und Momente auf. Diese Lösung hat Vorteile gegenüber herkömmlichen Lagerungen mit zwei Lagern: Nur ein Lagersitz muss bearbeitet, nur ein Lager eingebaut werden. Dadurch entfällt das Abstimmen von zwei Lagern aufeinander. Das Kreuzrollenlager beansprucht nur wenig Bauraum, deshalb kann die Fußlagerung klein sein.

Das Lager ist geeignet für Temperaturen von –30 °C bis +80 °C. In der Anschlusskonstruktion befinden sich die Dichtungsprofile A/R 1025 und A/R 0218, die das Lager vor Fremdstoffen schützen und das Fett im Lager halten. Klemmringe fixieren das Kreuzrollenlager.

Die Anschlusskonstruktion wurde mit der Finite-Elemente-Methode optimiert.

Verwendete INA-Produkte

- 1 Kreuzrollenlager SX..VSP
- 2 Dichtungsprofil A/R 1025
- 3 Dichtungsprofil A/R 0218

Vertriebsgesellschaft Ingenieurdienst

Vertriebsgesellschaft

INA-Schaeffler KG 91072 Herzogenaurach

Hausadresse: Industriestraße 1–3 91074 Herzogenaurach Tel. (09132) 82-0 Fax (09132) 82-4950 E-Mail info@ina.com

Ingenieurdienst

Region Nord

Regionalbüro Nord

Postfach 10 03 32 40767 Monheim Hausadresse: An der Alten Ziegelei 1 40789 Monheim Tel. (0 2173) 95 24-0 Fax (0 91 32) 82 45 9606

IB Rhein-Ruhr

Fax (0 91 32) 82 45 96 02

IB Siegen

Fax (09132) 82459603

KFZ-Büro Monheim

Fax (09132) 82459604

Technisches Büro und Lineartechnik Monheim

Fax (0 91 32) 82 45 96 05

IB Berlin

Cunostraße 64 14193 Berlin Tel. (030) 8 26 40-51/-52 Fax (030) 8 26 64 60

IB Bielefeld

Gottlieb-Daimler-Straße 2–4 33803 Steinhagen Tel. (0 52 04) 9 99-5 00 Fax (0 52 04) 9 99-5 01

IB Hamburg

Pascalkehre 13 25451 Quickborn Tel. (0 41 06) 7 30 83 Fax (0 41 06) 7 19 77

IB Hannover

KFZ-Büro Hannover

Technisches Büro und Lineartechnik Hannover

Postfach 810329 30503 Hannover

Hausadresse: Hildesheimer Straße 284 30519 Hannover Tel. (0511) 98 46 99-0 Fax (0511) 8 43 7126

Region Mitte

Regionalbüro Mitte

Gutenbergstraße 13 63110 Rodgau-Jügesheim Tel. (0 6106) 8506-0 Fax (0 6106) 8506-49

IB Offenbach

Tel. (0 61 06) 85 06-41 Fax (0 61 06) 85 06-49

Technisches Büro und Lineartechnik Mitte

Tel. (0 61 06) 85 06-50 Fax (0 61 06) 85 06-54

IB Nürnberg

Industriestraße 1–3 91074 Herzogenaurach Tel. (09132) 82-2347 Fax (09132) 82-4930

IB Chemnitz

Rabensteiner-Center Oberfrohnaer Straße 62 09117 Chemnitz Tel. (0371) 8 4272-0 Fax (0371) 8 4272-15

Technisches Büro und Lineartechnik Chemnitz

Tel. (03 71) 8 42 72-31 Fax (03 71) 8 42 72-15

Region Süd

Regionalbüro Süd IB Stuttgart

Untere Waldplätze 32 70569 Stuttgart Tel. (0711) 68787-0 Fax (0711) 68787-10

KFZ-Büro Süd

Technisches Büro Süd

IB Lahr

Postfach 17 60 77907 Lahr Hausadresse: Rheinstraße 17 77933 Lahr

Tel. (07821) 584237 Fax (07821) 51571

IB München

KFZ-Büro München

Technisches Büro und Lineartechnik München

Lackerbauerstraße 28 81241 München Tel. (0 89) 89 60 74-0 Fax (0 89) 89 60 74-20

Technische Daten für die Angebotsbearbeitung (Anlage zu Druckschrift KSX)

Kunde								
Anwendung								
Belastung	n	nax. stat.	Betriebsbela	astung ¹⁾	Testbelastung		dyn. Lebense	dauerbelastung
1 F _{0a}	kN						Fa	kN
2 F _{Or}	kN						F _r	kN
3 M _{0k} aus F _{0a}	kNm						M _{k1}	kNm
4 M _{0k} aus F _{0r}	kNm						M _{k2}	kNm
Benutzungsdauer ²⁾		В		а	Betriebs- und Umgebungst		minimal	°C
durchschn. Betriebsst	unden/Jahr	ha		h/a			maximal	°C
Lastspiele/Stunde		L _{sph}		h ⁻¹	Lagertempera	atur	maximal	°C
Betriebszeit/Tag			h/d	welcher Ring wird wärmer? Innenring (IR)/Auf)/Außenring (AU)	
davon Dreh- bzw.		%	Temperaturdi zwischen IR u			00		
gewünschte Lebensdauer				а	ZWISCHEH IR U	una au	maximal	°C
bei -Schi	chtbetrieb				vorgesehene	Lagerschmieru	ng	
kontinuierliche Dreh-/					Ölschmierung	9		Ja/Nein
Schwenkbewegung	du	rchschn.		o	Fettschmieru	ng		Ja/Nein
	ma	aximal		0	Zentralschmie	erung		Ja/Nein
Drehzahl	no	rmal		min ⁻¹				
	ma	aximal		min ⁻¹	Preisstellung	für		Stück
					gewünschte I	Lieferzeit		
treten starke Stöße od	er Vibration	en auf	Ja	a/Nein	gewünschter	Angebotstermin	n	
Vorschlag zur Abdichti der Anschlusskonstruk		erlich?	Ja	a/Nein	voraussichtlic	cher Bedarf pro	Jahr	Stück
gegen ³⁾					in Abrufmeng	jen von		Stück
tritt besondere Versch	mutzung au	ıf	Ja	a/Nein	Bearbeiter			
Lagerspiel ⁴⁾			Ja	a/Nein	Datum			
Lager spielfrei vorgesp	annt (VSP) ⁴	1)	Ja	a/Nein	²⁾ Vorgesehene	h Massenkräfte (z e Benutzungsdau	er der Anlage.	
besondere Anforderun	gen an den	Drehwid	erstand		3) Nicht nur da soll, sonderr4) Werte siehe	n auch aggressive	en, gegen das ab Umwelteinflüsse	gedichtet werden oder Atmosphäre.

INA-Schaeffler KG

91072 Herzogenaurach Internet www.ina.com E-Mail info@ina.com

In Deutschland: Telefon 0180/5003872 Telefax 0180/5003873

Aus anderen Ländern: Telefon +49/9132/82-0 Telefax +49/9132/82-4950

INA-Schaeffler KG

91072 Herzogenaurach Internet www.ina.com E-Mail info@ina.com

In Deutschland: Telefon 0180/5003872 Telefax 0180/5003873

Aus anderen Ländern: Telefon +49/9132/82-0 Telefax +49/9132/82-4950