

Bearing-integrated angular measuring system

The bearing-integrated angular measuring system is intended for use in electrically driven, position-controlled machine tool axes for the purpose of recording actual angular values. It consists of two assemblies – the measuring system bearing and the measuring head, *Figure 1*.

Rotary table bearing YRTCMA
Measurement ring
Measuring head MHA...-0

Figure 1 Bearing-integrated inductive measuring system (absolute)

The measuring system bearing is identical in design to the rotary table bearings YRTC and YRTS, except for the additional inclusion of a measurement ring of type AMO on the inner ring of the measuring system bearing, which features a regular grating structure as angular pitch with a pitch period of 1000 μ m. A stainless steel strip is used as the carrier material for the measurement ring, into which the periodic angular pitch is introduced by means of a high-precision photolithographic method with subsequent etching process. The measuring system bearings are alternatively available with absolute coded measurement rings, *Figure 1*, or with incrementally coded measurement rings, *Figure 2*, page 2. The product designation YRTCMA or YRTSMA refers to the first design and YRTCMI to the second.

SCHAEFFLER

Rotary table bearing YRTCMI
Measurement ring
Measuring head MHI...-0

Figure 2 Bearing-integrated inductive measuring system (incremental)

The measuring head works according to the inductive AMOSIN[®] measuring principle. The measuring head contains the primary and secondary coils for the inductive scanning of the measurement ring, the electronic measuring head system, interfaces, line driver and a cable with plug connector. The measuring heads with absolute measuring system interfaces in the MHA design are matched to the absolute variant of the measuring system bearing. The measuring heads with an incremental measuring system interface in the MHI design are matched to the incremental variant of the measuring system bearing. AMOSIN[®] is a trademark of AMO GmbH.

The measuring heads can be screwed directly onto the respective outer ring of the measuring system bearing. There are two mechanical variants of the measuring heads. With the variant that is suitable for radial screw mounting to the outer ring, *Figure 3*, there is no adjustment of the measurement gap and accessibility is very good. As a result, the expenditure associated with mounting work is reduced. In contrast, the version for axial screw mounting to the bearing outer ring, *Figure 4*, requires an adjustment of the measurement gap, but is smaller than the version referred to above.

Figure 3 Radial measuring head MHA...-0

Figure 4 Axial measuring head MHA...-2

Advantages of the measuring system	very good control characteristics (high control stability and high dynamics) due to the rigid mechanical connection to the adjacent construction
	extremely high system accuracies achieved with a single measuring head due to the use of precision components
	hollow shaft design; the centre of the axis is freely available for additional components
	non-contact and wear-free
	measurement carried out irrespective of tilting and position
	unaffected by oils, greases, cooling lubricants and magnets
	easy to mount as adjustment of the measurement gap is not required
	no need for alignment of the bearing and a separate measuring system
	no additional parts; the resulting space saved can be used for the machining area of the machine
	gives savings on components, overall design envelope and costs due to the compact, integrated design requiring fewer components
	available with all common measuring system interfaces
	reference search movement is not required with absolute measuring systems
	incremental measuring systems are electronically compatible with all common machine tool controllers
Characteristics of	The measuring system bearing:
measuring system bearings	has very high tilting rigidity
	has a very low frictional torque
	permits high mechanical limiting speeds
	undergoes minimal heating in continuous operation

permits maximum positional accuracy

Operating principle The AMOSIN[®] operating principle for scanning the angular pitch works on an inductive and non-contact basis. The planar coil structure, which is built into the measuring head (sensor), is unique and consists of multiple coil units arranged in a line in the direction of measurement, which in turn are composed of primary and secondary coils arranged on top of each other, *Figure 5*, page 6.

As a result of manufacturing the sensor unit on a flexible substrate using multi-layer technology, the curvature of the coil structure is matched to the curvature of the measurement rings.

The primary coils are excited with a high-frequency alternating voltage for inductive scanning of the measurement ring. This leads to the generation of electromagnetic alternating fields around the primary windings, which are damped by the crosspieces in the measurement ring and not damped by gaps.

For the measurement ring that is attached to the inner ring featuring a rotation facility, the following applies: The inductive coupling factor between the primary and secondary coils is influenced and modulated when the measurement ring moves relative to the measuring head (sensor). Depending on whether crosspieces or gaps are opposite the secondary coils, a lower or higher alternating current is induced in the secondary windings. The positional value in the measuring head is determined as follows from these differently modulated voltages.

Determination of position with absolute angular measuring systems In absolute measuring systems, an angular pitch with absolute coding and an angular pitch with incremental coding are arranged on the measurement rings in a circumferential direction, Figure 5. Both angular pitches are scanned using primary and secondary coils designed specifically for this purpose. Immediately after switching on the operating voltage, all primary coils are excited by alternating voltage. This leads to the generation of a unique bit pattern in the absolute secondary coils, from which the absolute angular position is determined by the measuring head for each pitch period. SIN-COS-modulated voltages are also generated in the incremental secondary coils, on the basis of which exact positions are determined and more finely resolved within a pitch period. The absolute actual angular position is calculated from these two sets of angle data – the angular position per absolute pitch period and the highresolution angular position within the incremental pitch period and transmitted to the controller via the serial data interface.

Primary windings
Secondary windings
Sensor substrate, microcoils
Absolute scanning
Incremental scanning
Measurement ring
Angular pitch with absolute coding
Angular pitch with incremental coding

Figure 5 Operating principle of inductive, absolute AMOSIN[®] angular measuring systems Determination of position with incremental angular measuring systems In incremental measuring systems, an angular pitch with incremental coding and several pitch-coded reference marks are arranged on the measurement rings in a circumferential direction, Figure 6. These two structures are scanned using primary and secondary coils designed specifically for this purpose. Immediately after switching on the operating voltage, all primary coils are excited by alternating voltage. As a result, SIN-COS-modulated voltages are generated in the incremental secondary coils, which are transmitted to the controller as analogue SIN-COS voltage signals. In the controller, the analogue voltage signals undergo A/D conversion and higher interpolation to generate the current incremental actual angular position. The pitch-coded reference marks are also scanned as a result of scanning the reference marks. This requires a search movement, in which the absolute actual angular position can be determined by the controller by passing over a minimum of two reference marks.

Sensor substrate, microcoils
Reference mark scanning
Incremental scanning
Measurement ring
Reference mark
Incremental angular pitch

Figure 6 Operating principle of inductive, incremental AMOSIN[®] angular measuring systems

Electronic interfaces Absolute interface

EnDat 2.2

The measuring system interface EnDat 2.2 is a digital, bi-directional interface for measuring devices. It is able to output positional values as well as read out and update information stored in the measuring device, or store new information. Due to the serial transmission of data, four signal lines are sufficient.

The data DATA are transmitted synchronously with the clock signal CLOCK predetermined by the electronic post-processor.

In addition to the EnDat-2.2 command set, no analogue 1 Vss signals are output.

The achievable clock frequency is determined by the length of the cable (maximum 100 m). With running time compensation in the electronic post-processor, clock frequencies of up to 16 MHz or cable lengths up to a maximum of 100 m are possible.

Transmission frequencies of up to 16 MHz in combination with long cable lengths place high technical demands on the cable. Longer cable lengths are achieved with the 1 m long measuring head cable and an extension cable. As a general rule, the entire transmission path must be designed for the respective clock frequency. For this reason, the sole use of extension cables specified and approved for EnDa 2.2 is recommended. Any interruptions in the signal line, due to slip rings for example, should also be avoided.

The digital electronic interface EnDat 2.2 is compatible with the Heidenhain TNC 640 controller and additionally compatible with the Siemens Sinumerik 840D sl controller via the Siemens sensor module SMC40, from firmware version 4.5 and 4.6.

The measuring systems EnDat 2.2 are self-configuring, therefore no parameters specific to the measuring system have to be entered into the controller.

Absolute interface DRIVE-CLiQ [®]	The measuring system interface DRIVE-CLiQ [®] is a digital, bi-directional interface for measuring devices. It is able to output positional values as well as read out and update information stored in the measuring device, or store new information. Due to the serial transmission of data, four signal lines are sufficient. The data DATA are transmitted synchronously with the clock signal CLOCK predetermined by the electronic post-processor. Longer cable lengths are achieved with the 1 m long measuring head cable and an extension cable. As a general rule, the entire trans- mission path must be designed for the respective clock frequency. For this reason, the sole use of extension cables specified and approved for DRIVE-CLiQ [®] is recommended. Any interruptions in the signal line, due to slip rings for example, should also be avoided. The digital electronic interface DRIVE-CLiQ [®] is compatible with the Siemens Sinumerik 840D sl controller. The measuring systems DRIVE-CLiQ [®] are self-configuring, therefore no parameters specific to the measuring system have to be entered into the controller.
Absolute interface SSI+1Vss (mixture of digital and analogue)	The SSI interface is a serial, digital interface via which absolute positional values are output. The data DATA (28 data bits) are trans- mitted synchronously with the clock signal CLOCK predetermined by the electronic post-processor. In addition, three places are available for special bits (error, warning and parity), whereby the warning bit is active and constantly at "0". If an internal error was detected in the measuring head, the error bit is set at "1".
	Two analogue voltage signals, SIN and COS, which can be highly interpolated in the electronic post-processor, are also output via the incremental 1 Vss interface. The sinusoidal incremental signals SIN and COS have an electrical phase-offset of 90° and an amplitude of nominally 1 Vss. The interface SIN COS SSI+1Vss is compatible with the Siemens

Sinumerik 840D sl controller and with the Siemens Sinamics S120 via the sensor modules SMC20, SMC30, SME25 and SME125, from firmware version 2.4.

The measuring systems SS1+VSS are not self-configuring, therefore the parameters which are specific to the measuring system have to be entered into the controller and are made available to the user on request.

Absolute interface Fanuc02 (FANUC α)	The Fanuc02 interface (interface version High Resolution Type B) is a serial, digital interface via which absolute positional values are output.
	The data DATA are transmitted synchronously with the clock signal CLOCK predetermined by the electronic post-processor.
	The measuring systems Fanuc02 are not self-configuring, therefore parameters specific to the measuring system have to be entered into the controller.
Incremental interface SIN COS 1Vss + REF (analogue)	The measuring system outputs two analogue voltage signals, SIN and COS, which can be highly interpolated in the electronic post- processor, and a pitch-coded reference signal REF, via the incremen- tal 1 Vss interface.
	The sinusoidal incremental signals SIN and COS have an electrical phase-offset of 90° and an amplitude of nominally 1 Vss.
	The interface SIN COS is compatible with the Siemens Sinumerik 840D sl controller and with the Siemens Sinamics S120 via the sensor modules SMC20, SME20 and SME120.
	The incremental measuring systems SIN COS 1Vss are not self- configuring, therefore the parameters which are specific to the measuring system have to be entered into the controller and are made available to the user on request.
Functional safety	The angular measuring systems with the digital, electronic measur- ing system interfaces EnDat 2.2, DRIVE-CLIQ [®] and analogue measur- ing system interface SIN COS 1Vss are intended for positional determination on rotary axes in applications with a safety focus. These angular measuring systems can be used under normal conditions and in authorised operation for safety-related positioning control loops in applications with a safety focus to IEC 61508 and EN ISO 13849-1.
	The mechanical connection of the measuring device to the drive also has safety implications, in addition to the electronic interface. As the controller cannot necessarily detect such errors, an error exclusion is often required in order to loosen the mechanical connec- tions.
	In the standard Adjustable speed electrical power drive systems, DIN EN 61800-5-2:2017-11, Table D.8, the loosening of the mechan- ical connection between the measuring system and drive is listed as an error case for consideration.

In order to be able to use the angular measuring system in a safetyfocussed application, the user must use a suitable controller. The fundamental task of the controller is to communicate with the measuring system and reliably evaluate the measuring system data.

For this reason, the safety parameters for the angular measuring systems and the error assumption/error exclusion analysis in Table D.8 for motion and position feedback sensors in accordance with standard DIN EN 61800-5-2:2017-11 are available on request for safety-related analyses of the entire system.

The user of the angular measuring system is solely responsible for:

- the correct implementation, on the machine side, of the signal monitoring of digital interfaces and of analogue interface SIN COS 1Vss in accordance with safety integrity (for example, specification and implementation of the evaluation circuit and logic)
- evaluating the safety integrity of the measuring system in its application environment on the basis of technical data (for example, MTTFd)
- the correct design, on the application side, of the adjacent construction of the measuring system bearing in accordance with the design specifications
- the correct fitting or mounting of the measuring system bearing in accordance with the mounting manual
- the correct fitting or mounting of the measuring head in accordance with the mounting manual

The data in the following documents must be observed in relation to the intended use of the angular measuring system:

- product information
- design specifications
- mounting instructions
- error assumption/error exclusion analysis and safety parameters of the angular measuring system
- CE declaration of conformity (by agreement)
- specification of a reliable controller from the respective controller manufacturer
- datasheet for encoder system connection to sensor module

Technical data Angular resolution and system accuracy

The achievable angular resolution, i.e. the number of analogue output signal periods (pitch periods) with incremental measuring systems or the smallest possible resolvable angular step for absolute measuring systems with digital interfaces, depends on the diameter of the measuring system bearing. The system accuracy also depends on the diameter of the measuring system bearing, see table, page 13, and is additionally influenced by the:

- pitch accuracy of the measurement ring
- positional deviations during a signal period
- scanning quality of the measuring head
- quality of the electronic signal processing system of the measuring head
- eccentricity of the bearing outer ring and measurement ring relative to the theoretical axis of rotation
- roundness of the bearing outer ring

The listed values for system accuracy without compensation are maximum approved values that will not be exceeded. Some of the influencing variables lead to reproducible (repeatable) error quotas and some to non-reproducible (random) error quotas. The reproducible error quotas can be determined metrologically with the aid of the reference angular measuring system, stored in the controller as a correction table and compensated for mathematically. The values listed with compensation in the System accuracy column can be achieved with the aid of this compensation method.

The following influences are excluded from the values for system accuracy:

- mechanical deviations doe to mounting
- external electronic influences
- resolution of the positional regulator or controller

Designation		Angular resoluti	System accuracy		
	Pitch periods [number per revolution]	SSI+1Vss [per revolution]	EnDat 2.2, FANUC α , DRIVE-CLiQ [®] [per revolution]	Without compensation [± angular seconds]	With compensation [± angular seconds]
YRTCMA150	672	672×1024	23 bit	9,7	3
YRTCMA180	768	768×1024	23 bit	9,3	2,6
YRTCMA200, YRTSMA200	860	860×1024	23 bit	8,3	2,3
YRTCMA260, YRTSMA260	1 0 8 8	1088×1024	24 bit	6,6	1,8
YRTCMA325, YRTSMA325	1 302	1302×1024	24 bit	6	1,5
YRTCMA395, YRTSMA395	1 5 3 0	1530×1024	24 bit	5,1	1,3
YRTCMA460, YRTSMA460	1760	1760×1024	24 bit	4,4	1,1
YRTCMA580	2196	2196×1024	25 bit	6,2	1,3
YRTCMA650	2 508	2508×1024	25 bit	5,4	1,1
YRTCMA850	3 200	3200×1024	25 bit	4,3	0,9
YRTCMA950	3 5 4 0	3 540×1 024	25 bit	3,9	0,8
YRTCMA1030	3 808	3808×1024	25 bit	3,6	0,7

The description provided above for the absolute measuring system bearings YRTCMA and YRTSMA also applies analogously to the incremental measuring system bearings YRTCMI, see table. The basic differential pitch of the pitch-coded reference marks is also listed for the measuring system bearings.

Angular resolution and system accuracy of incremental measuring system bearings YRTCMI

Angular resolution and system accuracy of absolute measuring system bearings YRTCMA, YRTSMA

Designation	Pitch periods	Basic pitch of the reference marks	System accuracy	
	[number per revolution]	[pitch periods]	Without compensation [± angular seconds]	With compensation [± angular seconds]
YRTCMI180	768	48	11,9	5,1
YRTCMI200	860	86	10,6	4,6
YRTCMI260	1 088	64	8,4	3,6
YRTCMI325	1 302	62	7,5	3
YRTCMI395	1 530	90	6,4	2,6
YRTCMI460	1 760	80	5,5	2,2

Measuring heads MHA

The absolute measuring head MHA is available with the fully digital interfaces EnDat 2.2, FANUC α and DRIVE-CLiQ[®], as well as with the mixed digital and analogue interface SSI+1Vss.

Charac	teristics	Unit	Measuring head MHA				
Interfa	ce	-	EnDat 2.2	FANUC α	DRIVE-CLIQ [®]	SSI+1Vss	
Design	ation	-	EnDat 2.2	EnDat 2.2 Fanuc02		SSI+1Vss	
Grating	g period	μm		10	00		
Maxim	um input frequency	kHz		2	0		
Clock f	requency	-	\leq 16 MHz	-	100 MBit/sec	\leq 1 MHz	
Safety	parameters	-	Available by agreement	Not applicable	Avai by agre	lable eement	
Supply	voltage range	DC V	3,6 t	3,6 to 14 10 to 36			
Power	consumption	W	1,	,5	2,1	1,5	
Curren	t consumption	mA	300 (at	DC 5 V)	85 (at DC 24 V)	300 (at DC 5 V)	
Cable	Sheath material	-		PUR UL Style 20963 80°C 30V			
	Ends	-		4×0,09 mm ² 4×0,14 mm ²			
	Length at measuring head	m		1+0),03		
	Diameter	mm		4,5	±0,1		
	Bending radius with single bend	mm		2	10		
	Bending radius with deflection	mm		≧	50		
Plug co	onnection	-	8-pin couplir pins			17-pin coupling M23, pins	
Workir	ig temperature range	°C		-10 t	0 +85		
Storag	e temperature range	°C		-20 t	o +85		
Electri	cal protection type	-	IP67 (type MHA2) IP68 (type MHA0)				
Rotary	table bearing series	-		YRTCMA150 to YRTCMA1030 YRTSMA200 to YRTSMA460			

 $\mathsf{DRIVE}\text{-}\mathsf{CLiQ}^{\textcircled{R}}$ is a protected trademark of Siemens AG.

Measuring heads MHI

The incremental measuring head MHI is available with the analogue interface SIN COS 1Vss + REF.

Chara	cteristics	Unit	Measuring head MHI
Interface		-	Analogue output signals SIN COS 1Vss
Design	nation	-	SIN COS 1Vss
Gratin	g period	μm	1 000
Maxim	ium input frequency	kHz	100
Safety	parameters	-	Available by agreement
Supply	y voltage range	DC V	4 to 7
Power	consumption	W	approx. 1,3
Curren	It consumption	mA	approx. 260 (at DC 5 V)
Cable	Cable sheath material	-	PUR UL Style 20963 80°C 30V
	Ends	-	6×2×0,09 mm ²
	Cable length of measuring head	m	1+0,03
	Cable diameter	mm	4,5 ^{±0,1}
	Bending radius with single bend	mm	≧10
	Bending radius with deflection	mm	≧ 50
Plug c	onnection	-	12-pin coupling M23, pins
Workin	ng temperature range	°C	-10 to +85
Storag	e temperature range	°C	-20 to +85
Electri	cal protection type	-	IP67 (type MHI2) IP68 (type MHI0)
Rotary	table bearing series	-	YRTCMI180 to YRTCMI460

Technical data on measuring system bearings

Technical data on measuring system bearings

Designation	Basic load ra rigidity of ro	atings, lling elements	5
	axial		
	C _a	C _{0a}	C _{aL}
	kN	kN	kN/µm
YRTC150, YRTCMA150	128	650	12
YRTC180, YRTCMA180, YRTCMI180	135	730	13,5
YRTC200, YRTCMA200, YRTCMI200	147	850	15,5
YRTC260, YRTCMA260, YRTCMI260	168	1 090	19
YRTC325, YRTCMA325, YRTCMI325	247	1 900	33
YRTC395, YRTCMA395, YRTCMI395	265	2 1 9 0	37
YRTC460, YRTCMA460, YRTCMI460	290	2 550	43
YRTC580, YRTCMA580	577	4 4 5 0	41,8
YRTC650, YRTCMA650	916	6 800	51,4
YRTC850, YRTCMA850	1017	8 500	61,9
YRTC950, YRTCMA950	1 0 8 0	9 500	72,7
YRTC1030, YRTCMA1030	1130	10 300	74,9

¹⁾ Short operating duration.

²⁾ Consultation with Schaeffler.

		Rigidity of bearing		Tilting rigidity		Limiting speed		Bearing frictional		
	radial			axial	radial	Rolling elements	Bearing			torque
	Cr	C _{0r}	C _{rL}	C _{aL}	C _{rL}	C _{kL}	C _{kL}	n _G		Mr
								Continuous operation	Swivelling operation ¹⁾	at 5 min ⁻¹
	kN	kN	kN/μm	kN/μm	kN/μm	kNm/mrad	kNm/mrad	min ⁻¹	min ⁻¹	Nm
	75	146	4,8	3,8	3,2	61	18,6	800	2)	4
	100	200	5,3	4,7	3,6	88,5	29	600	2)	5
	123	275	6,2	4,9	4,1	128	40	450	2)	6
	140	355	8,1	6,9	5,3	265	104	300	2)	9
	183	530	9,9	7,1	6,3	633	159	200	2)	13
	200	640	13	9,9	5,8	1 002	280	200	2)	19
	265	880	17	12	6,5	1 543	429	150	2)	25
	235	730	11,2	11,9	2,9	1 960	735	80	200	60
	458	1 300	8,2	20,6	7,3	3 5 5 4	1 1 9 3	70	170	70
	520	1 690	12	26,5	11,9	6772	2 351	50	125	130
	550	1 890	17,9	30,7	13,6	11 494	3 0 5 8	45	110	170
	577	2 0 5 0	19	36,4	15,2	14 285	5 400	40	100	250

Dimensions

Shaft locating washer
Outer ring
Measurement ring

Figure 7 Dimensions

Dimensions of YRTCMA, YRTSMA, YRTCMI

Designation	Dimensions in mm			
	Н	H ₂	D ₁	
			Ø	
YRTCMA150	47	21	214,5	
YRTCMA180, YRTCMI180	50	21	245,1	
YRTCMA200, YRTSMA200, YRTCMI200	51	21	274,4	
YRTCMA260, YRTSMA260, YRTCMI260	57,5	21	346,9	
YRTCMA325, YRTSMA325, YRTCMI325	61	21	415,1	
YRTCMA395, YRTSMA395, YRTCMI395	65	22,5	487,7	
YRTCMA460, YRTSMA460, YRTCMI460	70	24	560,9	
YRTCMA580	90	30	699,7	
YRTCMA650	122	44	799	
YRTCMA850	124	43,5	1019,3	
YRTCMA950	132	46	1 1 27,5	
YRTCMA1030	145	52,5	1 212,8	

Dimensions of YRTC, YRTS

Designation Dimensions in mm			
	Н	H ₂	D ₁
			Ø
YRTC150	40	14	214
YRTC180	43	14	244
YRTC200, YRTS200	45	15	274
YRTC260, YRTS260	55	18,5	345
YRTC325, YRTS325	60	20	415
YRTC395, YRTS395	65	22,5	486
YRTC460, YRTS460	70	24	560
YRTC580	90	30	700
YRTC650	122	44	800
YRTC850	124	43,5	1018
YRTC950	132	46	1 1 3 0
YRTC1030	145	52,5	1 215

For additional bearing-specific performance data, dimensions and tolerances, as well as design and mounting recommendations, please also refer to the Technical Product Information for rotary table bearing series YRTC and YRTS.

3D CAD data files are available on the entire bearing and measuring head series, which can be sent on request or downloaded from the Schaeffler website.

Connector assignment of interfaces

Figure 8 Plug connection interfaces EnDat 2.2, FANUC α and DRIVE-CLiQ[®]

Connector assignment for interfaces EnDat 2.2, FANUC $\boldsymbol{\alpha}$ and DRIVE-CLiQ[®]

		6 ° 70 { 10	04 03 03 02	00192B60
Parameters	Signal designation	PIN	Cable colour	
Power supply	Up	8	Green/brown	

Power supply	Up	8	Green/brown
	Sensor Up	2	Blue
	0V	5	Green/white
	Sensor 0V	1	White
Signals for	DATA+	3	Grey
absolute positional value	DATA-	4	Pink
	CLOCK+	7	Purple
	CLOCK-	6	Yellow

 $\begin{array}{c} 50 & \begin{array}{c} 0 & 07 \\ 40 & 0 & 17 \\ 0 & 0 & 17 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 20 & 0 & 10 \\ 10 & 011 \end{array}$

Figure 9 Plug connection interface SSI+1Vss

Connector assignment for interface SSI+1Vss

Parameters	Signal designation	PIN	Cable colour
Power supply	Up	7	Green/brown
	Sensor Up	1	Blue
	0V	10	Green/white
	Sensor 0V	4	White
Increment signals	A+	15	Brown
	A–	16	Green
	B+	12	Grey
	B-	13	Pink
Signals for	DATA+	14	Red
absolute positional value	DATA-	17	Black
	CLOCK+	8	Violet
	CLOCK-	9	Yellow

00192B5D

00192B5B

Figure 10 Plug connector interface SIN COS 1Vss + REF

Connector assignment for interface SIN COS 1Vss + REF

Parameters	Signal designation	PIN	Cable colour
Power supply	Up		Green/brown
	Sensor Up	2	Blue
	0V	10	Green/white
	Sensor 0V	11	White
Output signals	A+	5	Brown
	A-	6	Green
	B+	8	Grey
	B-	1	Pink
	REF+	3	Red
	REF-	4	Black
Other signals	Diag+	7	Violet
	Diag-	9	Yellow

Adjacent construction

Measuring head MHA...-0, which is suitable for radial screw mounting, has a flange into which a circumferential groove, containing an O ring, is incorporated, *Figure 11*. The purpose of this O ring is to protect the interior of the rolling bearing against external environmental influences and to retain the rolling bearing grease.

Figure 11 Measuring head MHA...-0 suitable for radial screw mounting

A suitable opening, with dimensions matched to this seal, can be milled into the axis housing, *Figure 12*.

 ① Joining bevel for O ring
② Observe mounting position of bearing and measuring head in the housing
③ Housing (customer side)

Figure 12 Dimensions

Dimensions

Designation	Depth T	Width B
	mm	mm
YRTCMA180, YRTCMI180	30,5±0,1	50±0,1
YRTCMA200, YRTSMA200, YRTCMI200	30,5±0,1	50±0,1
YRTCMA260, YRTSMA260, YRTCMI260	30,5±0,1	53±0,1
YRTCMA325, YRTSMA325, YRTCMI325	30,5±0,1	55±0,1
YRTCMA395, YRTSMA395, YRTCMI395	30,5±0,1	55±0,1
YRTCMA460, YRTSMA460, YRTCMI460	30,5±0,1	57±0,1
YRTCMA580	34,5±0,1	69±0,1
YRTCMA650	39,5±0,1	78±0,1

Ordering numbers

The structure of the designations and the ordering numbers for rotary table bearings and measuring heads can be found below.

Structure of designations of rotary table bearings YRTCMA

Con	nponents of designation	Possible data	Description
1	Bore diameter	150 180 200 325 395 460 580 650 850 950 1030	-
2	Pitch accuracy	$03\pm 3\mu m$	with YRTCMA150 to YRTCMA460
		$05 \pm 5 \mu m$	with YRTCMA580 to YRTCMA1030
3	Pitch periods, 360°	0672	with YRTCMA150
		0768	with YRTCMA180
		0860	with YRTCMA200
		1088	with YRTCMA260
		1302	with YRTCMA325
		1530	with YRTCMA395
		1760	with YRTCMA460
		2196	with YRTCMA580
		2508	with YRTCMA650
		3200	with YRTCMA850
		3540	with YRTCMA950
		3808	with YRTCMA1030

Figure 13 Ordering number code for absolute measuring system bearings YRTCMA Structure of designations of rotary table bearings YRTSMA

Cor	nponents of designation	Possible data	Description	
1	Bore diameter	200	-	
		260		
		325		
		395		
		460		
2	Pitch accuracy	$03\pm 3~\mu m$	-	
3	Pitch periods, 360°	0860	with YRTSMA200	
		1088	with YRTSMA260	
		1302	with YRTSMA325	
		1530	with YRTSMA395	
		1760	with YRTSMA460	

Figure 14 Ordering number code for absolute measuring system bearings YRTSMA

Structure of designations of absolute measuring head MHA

Con	nponents of designation	Possible data	Description
1	Туре	150 180 200 260 325 395 460 580 650 850 950 1030	Matched to bearing type (bore diameter)
2	Mechanical design	0	Suitable for radial screw mounting
		2	axial screw mounting
3	Electronic interface	0	SSI+1Vss
		2	DRIVE-CLIQ [®] (DQ)
		3	Fanuc02 (FANUC α)
		6	EnDat 2.2
4	Absolute resolution per	1	10 bit (SSI+1Vss)
	pitch period	3	14 bit (EnDat 2.2, FANUC α , DQ)
5	Maximum input frequency	4	20 kHz (standard)
6	Analogue pitch factor	0	Factor 1 (not subdivided) for SSI
		Ν	EnDat 2.2, FANUC α , DQ
\bigcirc	Pitch periods, 360°	0672	with MHA150
		0768	with MHA180
		0860	with MHA200
		1088	with MHA260
		1302	with MHA325
		1530	with MHA395
		1760	with MHA460
		2196	with MHA580
		2508	with MHA650
		3200	with MHA850
		3540	with MHA950
		3808	with MHA1030
8	Cable length in m	1	Standard
9	Electrical connections	7	17-pin coupling M23, pin for SSI +1Vss
		8	8-pin coupling M12, pin for EnDat 2.2, FANUC α, DQ
10	Direction of cable connection	1	Left (standard)
11	Circuit version	A	-

Figure 15 Ordering number code for absolute measuring heads MHA

Structure of designations of rotary table bearings YRTCMI

Components of designation		Possible data	Description	
1	Bore diameter	180	-	
		200		
		260		
		325		
		395		
		460		
2	Pitch accuracy	$03\pm 3~\mu m$	-	
3	Pitch periods, 360°	0768	with YRTCMI180	
		0860	with YRTCMI200	
		1088	with YRTCMI260	
		1302	with YRTCMI325	
		1530	with YRTCMI395	
		1760	with YRTCMI460	

Figure 16 Ordering number code for incremental measuring system bearings YRTCMI Structure of designations of incremental measuring head MHI

Con	nponents of designation	Possible data	Description
1	Туре	180 200 260 325 395 460	Matched to bearing type (bore diameter)
2	Mechanical design	0	Suitable for radial screw mounting
		2	Suitable for axial screw mounting
3	Electronic interface	1	SIN COS 1Vss
4	Maximum input frequency	1	100 kHz
5	Analogue pitch factor	1	Factor 1 (not subdivided)
6	Pitch periods, 360°	0768	with MHI180
		0860	with MHI200
		1088	with MHI260
		1302	with MHI325
		1530	with MHI395
		1760	with MHI460
$\overline{\mathcal{I}}$	Cable length in m	1	Standard
8	Electrical connections	1	12-pin coupling M23, pins
9	Direction of cable connection	1	Left (standard)
10	Circuit version	A	-

Figure 17 Ordering number code for incremental measuring heads MHI

Schaeffler Technologies

AG & Co. KG Georg-Schäfer-Straße 30 97421 Schweinfurt Germany www.schaeffler.de/en info.de@schaeffler.com

In Germany: Phone 0180 5003872 From other countries: Phone +49 9721 91-0 All information has been carefully compiled and checked by us, but we cannot guarantee complete accuracy. We reserve the right to make corrections. Therefore, please always check whether more up-to-date or amended information is available. This publication supersedes all deviating information from older publications. Printing, including excerpts, is only permitted with our approval. © Schaeffler Technologies AG & Co. KG PDB 63 / en-GB / DE / 2021-10