- X/Y Positioning Systems based on Planar Motor Technology
INA – Drives & Mechatronics GmbH & Co. KG, a member of the Schaeffler Group, is a specialist in linear and rotary direct drives. To complement these products, we also offer directly driven positioning systems and all the necessary controllers and mechatronic assemblies.

In addition to standard products, IDAM also develops and produces customised drive solutions.

In modern machines and equipment, direct drives are increasingly replacing standard drive solutions because of ever-stricter requirements for dynamics, precision and cost-effectiveness. Directly linking the motor and the moving mass increases the dynamic and static rigidity, enabling high-performance positioning movements.

Direct drives are low wearing. This allows maintenance and operating costs to be reduced whilst also increasing availability. For more than 20 years, teams at IDAM have been developing and producing direct drives and complex drive systems for the following sectors: machine tools and production machinery, automation, productronics/semicon, measuring technology and medical engineering.

Models and simulations are integrated into the development process for direct drives and positioning systems, making the process more efficient.

IDAM has a cutting-edge quality management system. At IDAM, quality management is a dynamic process that is checked daily and continuously improved. IDAM is certified to DIN EN ISO 9001:2008.

IDAM uses specially developed tools to develop and design the motors, including tools for mechanical and thermal simulation. This produces results that our customers can use to optimise their subsequent designs.

The Perfect Drive for Every Application.

Direct drives: efficient and flexible
Contents

Planar Motors – Features, benefits, applications ... 4
System Description – Basic configuration, PLC library, servo drive .. 5
System Description – System configuration .. 6
Technical Data ... 7
Technical Drawing – Planar forcer .. 9
Technical Drawing – Planar stator ... 10
Applications ... 11
Planar Motors
Features, benefits, applications

Features

Planar motors with air bearings consist of a structured stator plate, on which one or more orthogonally aligned forcer modules move. Motors and measuring systems are ideally combined in the same plane.

Benefits

- Easy construction of X/Y motion systems
- Motion range and number of forcers scalable
- Low height as all axes are in one plane
- Free choice of installation position in space
- Can be combined with other axes
- Wear-free air bearings
- Use of state of the art, standardised control technology
- Lightweight construction thanks to use of compound materials (140 kg/m²)
- Excellent accuracy in terms of parallelism, flatness and positioning across entire motion range
- High dynamics (2 m/s, 33 m/s²) and short settling times
- Twist correction (Phi) of forcers possible
- High speed consistency

Applications

Particularly suitable for efficient implementation of applications in:

- Automation
- Micro-assembly
- Laser technology
- Laboratory technology
- Pressure applications
- Measuring and testing applications

Planar stator: Scalable to a maximum size of 1500 x 1000 mm

Lightweight stator

Circuit board assembly
Die bonding
System Description
Basic configuration, PLC library, servo drive

Basic configuration

1. Planar stator
2. Planar forcer
3. Compressed air
4. IPC with Soft-PLC TwinCAT
5. Planar servo library
7. Power supply

IDAM® Servo Control E – PLC library

- PLC library for control of IDAM® servo planar forcer, with three independent closed loop axes (X, Y, Phi)
- User-friendly configuration using Soft-PLC TwinCAT system manager
- Easy programming using PLC programming environment in all languages in compliance with IEC61131-3
- Graphical development environment including scope function for easy commissioning and service
- Automatic calibration mode
- CANopen software interface (CiA-402)

Servo drive, type: DMD-078.12

- Optimised for controlling of planar forcers
- Configurable for 8 single phase motors, 4 two phase motors or 4 three phase motors
- Rated current: 7 A_{rms} per phase
- DC link voltage up to 120 V_{DC}
- Field bus: EtherCAT®
- Encoder inputs for Hall sensors and optical sensors (sin/cos, 1 V_{pp}) for position measurement
- 8 freely configurable digital inputs or outputs
System Description
System configuration

System configuration (example)

Example with 4x planar forcers, 4x multi-axis systems (4x Z axes and 4x Phi axes), 6x DMD-078.12 and 1x IPC as motion controller
Technical Data

<table>
<thead>
<tr>
<th>X/Y positioning system</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum stroke: X axis</td>
<td></td>
<td>mm</td>
<td>1264 (1286*)</td>
</tr>
<tr>
<td>Maximum stroke: Y axis</td>
<td></td>
<td>mm</td>
<td>786 (764*)</td>
</tr>
<tr>
<td>Maximum velocity: X axis</td>
<td>v_{max}</td>
<td>m/s</td>
<td>2</td>
</tr>
<tr>
<td>Maximum velocity: Y axis</td>
<td>v_{max}</td>
<td>m/s</td>
<td>2</td>
</tr>
<tr>
<td>Pitch</td>
<td>T_z</td>
<td>mm</td>
<td>1</td>
</tr>
<tr>
<td>Measuring system, magnetic</td>
<td></td>
<td></td>
<td>$3 \times \sin/\cos, 1 \text{ V}_{pp}$</td>
</tr>
<tr>
<td>Absolute accuracy: X axis</td>
<td></td>
<td>µm</td>
<td>±8</td>
</tr>
<tr>
<td>Absolute accuracy: Y axis</td>
<td></td>
<td>µm</td>
<td>±8</td>
</tr>
<tr>
<td>Repeat accuracy: X axis</td>
<td></td>
<td>µm</td>
<td>±1</td>
</tr>
<tr>
<td>Repeat accuracy: Y axis</td>
<td></td>
<td>µm</td>
<td>±1</td>
</tr>
<tr>
<td>Working air pressure</td>
<td>p</td>
<td>bar</td>
<td>4</td>
</tr>
<tr>
<td>Working air gap</td>
<td>$h_{min} - h_{max}$</td>
<td>µm</td>
<td>8 – 12</td>
</tr>
</tbody>
</table>

Planar forcer: XDDS-236-214-S-E-S-PRIM			
Dimensions	$L \times W \times H$	mm	236 x 214 x 33
Force	F_H	N	130 ± 10%
Mass	m	kg	3.9
Rated current	I_s	A	6

Planar stator: XDDS-L1-L2-X-SEK			
Maximum stator length	L_1	mm	1500
Maximum stator width	L_2	mm	1000
Flatness		µm	On request
Mass/surface area		kg/m²	140
Height	H_1	mm	86 at L_1 and $L_2 < 700$
			116 at L_1 or $L_2 \geq 700$

* Forcer alignment: Forcer rotated by 90°
Technical Data

<table>
<thead>
<tr>
<th>X/Y positioning system</th>
<th>Symbol</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Servo drive, type: DMD-078.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IPC with Soft-PLC TwinCAT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Planar servo library</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Power supply</td>
</tr>
</tbody>
</table>

Maximum motor force depending on speed at phase current

\[I = 12 \, A_{\text{peak}} \]

![Force vs. velocity graph](image-url)

Force vs. velocity
Technical Drawing
Planar forcer

Threads for mounting assemblies
M5 x 10 (4x)

Air connection

Sensor cable
18 x 0.14 Ø7.7
Motor cable
18 x 0.34 Ø10.7

Underside
(contact side for planar stator)
IDAM planar stators are produced in a hybrid steel and foamed aluminium construction. This results in a low stator weight with optimum rigidity. The benefits compared to a pure steel construction lie in cost reductions due to ease of assembly and low handling and transport costs.

Example:
Stator size: 850 mm x 850 mm
- Mass with conventional steel construction 275 kg
- Mass with hybrid construction 100 kg
The mass reduction is approx. 60%.

The height H_1 depends on the dimensions L_1 and L_2.

$H_1 = 86$ mm at L_1 and $L_2 < 700$ mm
$H_1 = 116$ mm at L_1 or $L_2 \geq 700$ mm
Applications

Open frame planar table for wafer positioning
Combination of two forcers for implementing movements in X, Y and Phi

Miniaturised modular production platform
Suitable for micro-assembly in flexible small series production.
The forcer motors transport and position the product holders to the individually exchangeable production modules on the sides of the planar stator.

Planar forcers can be extended with other drive axes
For this application: Extension with rotary direct drive system